
Ultimate Character Controller

Table of Contents

Ultimate Character Controller 2 ...
Getting Started 3 ...
Version 2.2 Update Guide 3 ..
Importing 10 ..
Demo Scene 13 ...
Setup 14 ...
Project Update 14 ...
Scene Setup 14 ...
Character Creation 15 ..
Item Type Creation 18 ...
Item Creation 20 ...
Organization 28 ..
Component Overview 29 ...
Editors 31 ...
Setup 31 ...
Character 33 ..
Item Types 36 ..
Item 39 ...
Object 42 ..
Integrations 43 ...
State Configuration 44 ..
Character 45 ..
Movement Types 54 ...
Included Movement Types 56 ...
First Person Combat 56 ...
First Person Free Look 56 ...
Third Person Adventure 56 ...
Third Person Combat 57 ..
Third Person Four Legged 57 ...
Third Person Point & Click 57 ...
Third Person Pseudo3D (2.5D) 58 ..
Third Person RPG 60 ..
Third Person Top Down 61 ..
Abilities 61 ...
Included Abilities 67 ..
Align To Ground 68 ...
Align To Gravity Zone 70 ...
Damage Visualization 71 ...
Detect Ground Ability Base 73 ...
Detect Object Ability Base 74 ...
Drive 75 ..

Interact 77 ...
Look At 81 ..
Pickup Item 81 ..
Ride 82 ...
Die 83 ...
Fall 85 ...
First Person Lean 86 ..
Follow Pseduo3D (2.5D) Path 87 ...
Generic 87 ..
Height Change 88 ...
Idle 89 ...
Rotate Towards 90 ...
Item Equip Verifier 90 ..
Jump 91 ..
Move Towards 93 ..
Move With Object 95 ..
NavMeshAgent Movement 96 ...
Quick Start 97 ...
Quick Stop 98 ..
Quick Turn 98 ..
Ragdoll 99 ..
Restrict Position 100 ..
Restrict Rotation 101 ...
Revive 101 ...
Rideable 103 ..
Stop Movement Animation 104 ..
Slide 105 ..
Speed Change 105 ..
Target Orbit 107 ...
Item Abilities 107 ...
Aim 109 ..
Block 110 ..
Drop 111 ...
Item Set 112 ..
Equip Next 112 ..
Equip Previous 112 ...
Equip Scroll 113 ..
Equip Unequip 113 ...
Toggle Equip 115 ..
Reload 115 ...
Third Person Item Pullback 116 ...
Use 117 ...
In Air Melee Use 118 ..

Melee Counter Attack 119 ...
Ability Starter 120 ..
Move Towards Location 121 ...
Animator Motion 124 ...
New Ability 125 ...
Effects 133 ...
Included Effects 135 ...
Boss Stomp 135 ..
Play Audio Clip 135 ...
Shake 136 ..
Generic Character 137 ...
Time 138 ...
Minimum Component Setup 139 ..
Camera 140 ..
View Types 144 ...
Included View Types 148 ...
First Person 148 ..
Combat 153 ..
Free Look 154 ..
First Person Transform Look 154 ...
Third Person 155 ...
Adventure 157 ...
Combat 157 ..
RPG 158 ..
Third Person Look At 158 ..
Third Person Pseudo3D (2.5D) 159 ..
Third Person Top Down 160 ..
Transition 161 ...
Aim Assist 162 ...
Object Fader 163 ..
Post Processing 166 ...
Split Screen 166 ..
Items 168 ...
Perspective 172 ..
First Person 173 ..
Third Person 178 ...
Actions 181 ..
Usable 182 ...
Flashlight 183 ..
Magic 183 ...
Melee Weapon 188 ...
Shootable Weapon 195 ..
Throwable Item 206 ...

Grenade Item 208 ...
Shield 208 ..
Dual Wielding 209 ..
Runtime Pickup 210 ...
Animator Audio State Set 214 ..
Inventory 216 ..
Item Types 222 ..
Item Sets 222 ..
Slots 232 ..
Animation 233 ...
Springs 233 ..
Animator 235 ...
Animator Controller 235 ..
Animator Parameters 238 ...
Default Animator Values 241 ..
First Person Arms 242 ...
Replacing Animations 243 ...
Animation Event Trigger 243 ..
Input 245 ..
Virtual Controls 248 ...
State System 249 ...
Presets 252 ..
Attributes 253 ...
Health 255 ...
Inverse Kinematics (IK) 261 ..
Objects 267 ..
Explosions 267 ..
Damage Processor 268 ..
Magic Particle 271 ..
Object Identifier 272 ..
Object Pickup 272 ...
Health Pickup 273 ...
Item Pickup 273 ..
Trajectory Object 274 ..
Grenade 278 ..
Magic Projectile 279 ...
Projectile 280 ..
Shell 282 ..
Moving Platforms 283 ..
Layer Manager 286 ...
Surface System 287 ...
Surface Manager 288 ...
Surface Impacts 290 ..

Surface Types 291 ..
Surface Effects 292 ..
Surface Identifiers 294 ..
Decal Manager 295 ...
Character Foot Effects 295 ..
Advanced Surface System Topics 296 ...
Spawn System 298 ...
Respawner 298 ..
Spawn Points 300 ...
Audio 302 ...
Programming Concepts 305 ..
Events 305 ...
Event Names 306 ..
Scheduler 310 ...
Object Pool 311 ...
Artificial Intelligence (AI) 312 ...
Multiplayer 316 ...
Virtual Reality (VR) 317 ...
Integrations 317 ...
Adventure Creator 317 ..
A* Pathfinding Project 317 ..
Cinemachine 318 ..
Control Freak 319 ...
DestroyIt 320 ...
Dialogue System 320 ...
Easy Touch 320 ...
Edy's Vehicle Physics 321 ...
Final IK 322 ..
High Definition Render Pipeline 323 ...
Horse Animset Pro 324 ..
InControl 324 ...
Input System 324 ..
Love/Hate 325 ...
NWH Vehicle Physics 326 ..
Opsive Behavior Designer 326 ...
Opsive Ultimate Inventory System 326 ..
Playmaker 349 ..
PuppetMaster 349 ..
Quest Machine 351 ...
Realistic Car Controller 351 ..
Rewired 352 ...
UMA 352 ...
Universal Render Pipeline 356 ...

Videos 358 ...

| 8

Ultimate Character Controller
Thank you for your purchase of the most powerful and flexible character controller on the
Asset Store. While the title says Ultimate Character Controller, this documentation is
applicable towards any of our character controllers, including the Ultimate Character
Controller, UFPS, Third Person Controller, First Person Controller, etc. All of these
controllers share the same code base and follow the same structure.

The Ultimate Character Controller is the result of two previously independent character
controllers on the Asset Store: UFPS and the Third Person Controller. We acquired UFPS
from VisionPunk in January 2016 and would like to thank VisionPunk for giving us the
opportunity to expand on UFPS.

When we initially started on version 2.0 we had a choice: patch UFPS and Third Person
Controller so they can work together or start from an empty project and take the best
aspects of UFPS and the Third Person Controller. While we knew that the latter would take
more time we thought the end result would be worth it.

We hope that you enjoy our character controller and would love to see what you create with
it. Please join us on the forums or discord and post your project on opsive.com/showcase –
we’d love to see what you’re working on!

https://opsive.com/forum
https://discord.gg/QX6VFgc
https://opsive.com/showcase

| 9

Getting Started

Version 2.2 Update Guide
The inventory classes within version 2.2 has been refactored in order to support our
upcoming inventory system. While the inventory system is a standalone asset that does not
require the character controller, the character controller is sharing a few classes with the
inventory system in order to make a seamless integration. As a result of these changes,
there are few steps required in order to update to version 2.2 from a prior version.

Import

After importing version 2.2 into your project a dialogue will appear which checks for the
basic requirements:

The following checks are performed:

Located Install Package: When version 2.2 is imported both the installer and a
separate package is imported. This separate package contains the character controller
assets.
Unity 2018.4 or Newer: Unity 2018.4 is now the minimum version. If you are running a
prior version you’ll need to first install 2018.4 or newer.
.NET 4.x Scripting Runtime: The scripting runtime has been updated and now uses
.NET 4. Version 3 of the framework has been deprecated and can be changed within
the Unity Player Settings.

Clean Install: Version 2.2 moves/removes many files and Unity Packages do not deal
well with these type of changes. As a result the entire
Opsive/UltimateCharacterController directory should be removed before version 2.2
is installed. Ensure you have first moved your own assets out of that folder and
have a backup.

https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/Manual/class-PlayerSettingsStandalone.html

| 10

Assuming all of these requirements are satisfied you can click Install to import version 2.2.
The Opsive/Installer folder can then be removed.

2.2 Setup

After version 2.2 has been installed the following changes are required:

Inventory Category

The class for the inventory categories has changed for version 2.2. Any created categories
should be created within the Item Type Manager.

Item Type Category Assignment

After the category has been created it should be reassigned to the Item Type.

Item Set Manager

Assign the created categories to the Item Set Manager.

Item Ability Category Assignment

The new categories should be assigned to the ItemSet Category field of the Item Set Item
Abilities. This will need to be done for each Item Ability: Equip Unequip, Toggle Equip,
Equip Next, Equip Previous, and Equip Scroll.

https://opsive.com/support/documentation/ultimate-character-controller/getting-started/setup/item-type-creation/
https://opsive.com/support/documentation/ultimate-character-controller/inventory/item-sets/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/item-abilities/item-set/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/item-abilities/item-set/

| 11

Default Loadout

The Item Type Count class has been renamed to Item Definition Amount. As a result the
Amount within the Inventory’s Default Loadout must be updated.

Item Pickup

Similar to the Default Loadout, the Amount field within the Item Definition Amounts on the
Item Pickup field must be updated.

Ability Allow Item Definitions

The Allow Item Definitions under the Ability’s General tab must be updated with the Item
Types.

Append Item

The Append Item field needs to be updated. This fields append the Item Definition’s name to
the state name and is most commonly used for the Aim ability.

Pickup Item

If you’re using the Pickup Item ability the Pickup Item Definitions need to be updated.

https://opsive.com/support/documentation/ultimate-character-controller/objects/object-pickup/item-pickup/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/pickup-item/

| 12

Drop Item

If you’re using the Drop Item ability the No Drop Item Definitions need to be updated.

Slot Equip

If you’re using the Slot Equip ability with the VR Add-On the Default Item Definitions and
Item Definition State Names arrays need to be updated.

Repeated Jump

If you’re using a Repeated Jump for the Jump ability the field has been renamed to Airborne
Jump. These values will need to be updated with the new name.

Nolan Rig

The Nolan rig has been reexported using Blender 2.8. Due to this change the previous Nolan
character will no longer work with the model included in version 2.2. If you’re using Nolan
in your own scene you’ll need to recreate the character.

Namespaces

Many common classes are shared between the character controller and inventory system.

| 13

These files are in a new “Shared” namespace. The follow commonly used classes were
changed:

Opsive.Shared.Events

Event Handler

Opsive.Shared.Game

Game Object Extensions (responsible for GetCachedComponent)
Object Pool
Scheduler

Opsive.Shared.Inventory

IItemIdentifier (formally Item Type)
ItemDefinitionBase

Opsive.Shared.Utility

Generic Object Pool (used to be within Object Pool)
Type Utility (for GetType)

API

The API underwent changes during the version 2.2 update. Most of the changes were for the
new inventory system structure.

Inventory

ItemTypeCount has been renamed to ItemDefinitionAmount, with Amount being an int
instead of a float.

AddItem has a new parameter:

/// <summary>
/// Adds the item to the inventory. This does not add the actual
ItemIdentifier - PickupItem does that.
/// </summary>
/// <param name="item">The Item to add.</param>
/// <param name="immediateEquip">Can the item be equipped
immediately?</param>
/// <param name="forcePickup">Should the item be force
equipped?</param>
void AddItem(Item item, bool immediateEquip, bool forceEquip)

PickupItemType has been renamed to Pickup with updated parameters:

/// <summary>
/// Adds the specified amount of the ItemIdentifier to the inventory.
/// </summary>

| 14

/// <param name="itemIdentifier">The ItemIdentifier to add.</param>
/// <param name="amount">The amount of ItemIdentifier to add.</param>
/// <param name="slotID">The slot ID that picked up the item. A -1
value will indicate no specified slot.</param>
/// <param name="immediatePickup">Should the item be picked up
immediately?</param>
/// <param name="forceEquip">Should the item be force
equipped?</param>
/// <returns>True if the ItemIdentifier was picked up.</returns>
bool Pickup(IItemIdentifier itemIdentifier, int amount, int slotID,
bool immediatePickup, bool forceEquip)

GetItem has been renamed to GetActiveItem:

/// <summary>
/// Returns the active item in the specified slot.
/// </summary>
/// <param name="slotID">The ID of the slot.</param>
/// <returns>The active item which occupies the specified slot. Can be
null.</returns>
Item GetActiveItem(int slotID)

GetItem now uses an IItemIdentifier instead of ItemType:

/// <summary>
/// Returns the item that corresponds to the specified ItemIdentifier.
/// </summary>
/// <param name="slotID">The ID of the slot which the item belongs
to.</param>
/// <param name="itemIdentifier">The ItemIdentifier of the
item.</param>
/// <returns>The item which occupies the specified slot. Can be
null.</returns>
Item GetItem(int slotID, IItemIdentifier itemIdentifier)

EquipItem has an updated parameter:

/// <summary>
/// Equips the ItemIdentifier in the specified slot.
/// </summary>
/// <param name="itemIdentifier">The ItemIdentifier to equip.</param>
/// <param name="slotID">The ID of the slot.</param>
/// <param name="immediateEquip">Is the item being equipped
immediately? Immediate equips will occur from the default loadout or
quickly switching to the item.</param>
void EquipItem(IItemIdentifier itemIdentifier, int slotID, bool
immediateEquip)

UnequipItem has an updated parameter:

| 15

/// <summary>
/// Unequips the specified ItemIdentifier in the specified slot.
/// </summary>
/// <param name="itemIdentifier">The ItemIdentifier to unequip. If the
ItemIdentifier isn't currently equipped then no changes will be
made.</param>
/// <param name="slotID">The ID of the slot.</param>
void UnequipItem(IItemIdentifier itemIdentifier, int slotID)

GetItemTypeCount has been renamed to GetItemIdentifierAmount with an updated
parameter:

/// <summary>
/// Returns the amount of the specified ItemIdentifier.
/// </summary>
/// <param name="itemIdentifier">The ItemIdentifier to get the amount
of.</param>
/// <returns>The amount of the specified ItemIdentifier.</returns>
int GetItemIdentifierAmount(IItemIdentifier itemIdentifier)

UseItem has been renamed to AdjustItemIdentifierAmount with updated parameters:

/// <summary>
/// Adjusts the amount of the specified ItemIdentifier.
/// </summary>
/// <param name="itemIdentifier">The ItemIdentifier to adjust.</param>
/// <param name="amount">The amount of ItemIdentifier to
adjust.</param>
void AdjustItemIdentifierAmount(IItemIdentifier itemIdentifier, int
amount)

RemoveItem has an updated parameter:

/// <summary>
/// Removes the ItemIdentifier from the inventory.
/// </summary>
/// <param name="itemIdentifier">The ItemIdentifier to remove.</param>
/// <param name="slotID">The ID of the slot.</param>
/// <param name="drop">Should the item be dropped when
removed?</param>
void RemoveItem(IItemIdentifier itemIdentifier, int slotID, bool drop)

Ultimate Character Locomotion

AddSubCollider(s) has been renamed to AddIgnoredCollider(s):

/// <summary>
/// Adds an element to the ignored collider array.
/// </summary>
/// <param name="collider">The collider which should be added to the

| 16

array.</param>
void AddIgnoredCollider(Collider collider)

/// <summary>
/// Adds an array to the ignored collider array.
/// </summary>
/// <param name="colliders">The colliders which should be added to the
array.</param>
void AddIgnoredColliders(Collider[] colliders)

RemoveSubCollider(s) has been renamed to RemoveIgnoredCollider(s):

/// <summary>
/// Removes the specified collider from the ignored collider array.
/// </summary>
/// <param name="collider">The collider which should be removed from
the array.</param>
void RemoveIgnoredCollider(Collider collider)

/// <summary>
/// Removes the specified colliders from the ignored collider array.
/// </summary>
/// <param name="colliders">The colliders that should be
removed.</param>
void RemoveIgnoredColliders(Collider[] colliders)

Generic Object Pool

ObjectPool.Get and ObjectPool.Return have been moved to GenericObjectPool.Get and
GenericObjectPool.Return. These are located within the Opsive.Shared.Utility namespace.

Importing
Installer

After importing into your project a dialogue will appear which checks for the basic
requirements:

The following checks are performed:

| 17

Located Install Package: When the asset is imported both the installer and a separate
package is imported. This separate package contains the character controller assets.
Unity 2018.4 or Newer: Unity 2018.4 is the minimum version. If you are running a
prior version you’ll need to first install 2018.4 or newer.
.NET 4.x Scripting Runtime: The scripting runtime version requires .NET 4. This can
be changed within the Unity Player Settings.

This page describes the process if you are updating from a version prior to version 2.2.
Assuming all of these requirements are satisfied you can click Install to import the latest
version. The Opsive/Installer folder can then be removed.

Import Errors

If you receive any errors upon import it is likely because of a namespace conflict. Lets say
that you have an existing project and in that project you have a class named Health:

using UnityEngine;

public class Health : MonoBehaviour
{
 /// <summary>
 /// Damages the object.
 /// </summary>
 public void Damage()
 {
 // My implementation.
 }
}

If you have this class in your project and import the Ultimate Character Controller you’ll
receive errors similar to:

Assets/Opsive/UltimateCharacterController/Demo/Scripts/DamageZone.cs(68,22)
: error CS1501: No overload for method `Damage’ takes `4′ arguments

The reason this error exists is because the original Health component in your project is
corrupting the global namespace and the compiler which doesn’t know which Health
component to use. The fix for this is to ensure all classes are in a namespace. You can fix
this error by adding my original Health component to its own namespace:

using UnityEngine;

namespace MyProject
{

https://unity3d.com/get-unity/download/archive
https://docs.unity3d.com/Manual/class-PlayerSettingsStandalone.html
https://opsive.com/support/documentation/ultimate-character-controller/getting-started/version-2-2-update-guide/
https://docs.unity3d.com/Manual/Namespaces.html

| 18

 public class Health : MonoBehaviour
 {
 /// <summary>
 /// Damages the object.
 /// </summary>
 public void Damage()
 {
 // My implementation.
 }
 }
}

Assembly Definitions

The Ultimate Character Controller uses its own Assembly Definition files to decrease overall
project compilation time. If you’d like to access an Ultimate Character Controller object
through scripting ensure you have first added the Opsive.UltimateCharacterController
Assembly Definition to your own Assembly Definition file.

Demo Scene

The Ultimate Character Controller Demo scene will not work if you only have the First
Person Controller or the Third Person Controller imported. You should instead use the
First/Third Person Controller Demo scene. The Ultimate Character Controller Demo scene
requires both the First Person Controller and the Third Person Controller to be imported.

Lightmapping

In order to reduce the download size the demo scene does not contain any lightmapping.
When the scene first opens it will appear dark and this can be corrected by baking the
scene. If the lights are not baked before hitting play they will automatically be disabled.

Import Time

The Ultimate Character Controller contains many animations/textures which increase the
amount of time that it takes to import the asset. If you don’t care about the demo scene

https://docs.unity3d.com/Manual/ScriptCompilationAssemblyDefinitionFiles.html
https://docs.unity3d.com/Manual/Lightmapping.html
https://docs.unity3d.com/Manual/Lightmapping.html
https://docs.unity3d.com/Manual/Lightmapping.html

| 19

content and want an extremely fast import time you can deselect the
Opsive/UltimateCharacterController/Demo folder and it will not bring in any assets used
within the demo scene. Note that this will not bring in any animator controllers or
animations so if you want these make sure you import the Demo/Animations and
Demo/Animator folders.

Animation Import Warnings

When you import the Ultimate Character Controller into a fresh project you should receive
no errors but there will be some warnings related to the animations, such as:

File ‘AimWalkFwd’ has animation import warnings. See Import Messages in
Animation Import Settings for more details.

The reason this warning exists is because the animations were authored in Blender and
Unity doesn’t like the way Blender exported the animation. Unfortunately there’s not a way
around this but this is a one time warning and does not affect the animations when they are
playing.

When the demo scene is opened Unity 2020.1+ will report a warning similar to:

Found a duplicate curve binding in Controller “Demo” with the name “LegIndex”.
This may result in unexpected behavior.

This is a bug in Unity and has been reported to them. You can follow the progress of their
bug within the Issue Tracker.

Demo Scene
The included demo scene provides a great base for testing out the features included within
the controller. When you start the demo scene the character will be spawned in the
basement hallway. If you’d like to prevent the character from spawning in this area you can
deselect Free Roam on the Demo Manager:

Ultimate Character Controller Demo Scene

If you’ve imported the First Person Controller or the Third Person Controller you’ll notice
that there are two demo scenes included. The Ultimate Character Controller demo scene
requires both the First Person Controller and the Third Person Controller in order for it to
work. If you do not have both assets imported you should use the single perspective demo
scene.

https://issuetracker.unity3d.com/issues/animation-curve-names-of-an-imported-3d-model-conflict-with-animator-parameter-names-when-animations-of-the-model-are-referenced

| 20

Setup

Project Update

The Ultimate Character Controller is an Editor Extension so when you import from the Asset
Store it does not bring the project settings with it. After the Ultimate Character Controller is
done importing the following window will appear:

If you are just getting started you should click the “Update Buttons and Layers” button. This
will add the default button mappings and layer settings.

By default, the Ultimate Character Controller uses Unity’s input system which relies on the
Input Manager. The Input Manager requires the button mappings (Jump, Crouch, Fire, etc.)
to be created ahead of time so this dialog will add the required button mappings. It will not
override a button mapping that already exists.

The layers will update Unity’s layer settings. This is recommended so the correct default
layer names appear. These layers can later be remapped within the character’s Layer
Manager.

If you would like to perform the button or layer update later you can do so by selecting the
Tools -> Opsive -> Ultimate Character Controller -> Main Manager menu option and then
select the Setup button followed by the Project tab at the top.

Scene Setup
Before you create your character the scene needs to first be setup to work with the Ultimate
Character Controller. Setting up the scene involves adding the scene-level manager
components and adding the Camera Controller. The scene-level manager components
include objects such as the Object Pool and Surface Manager which are a singleton

https://docs.unity3d.com/Manual/class-InputManager.html
https://docs.unity3d.com/Manual/Layers.html
https://opsive.com/support/documentation/ultimate-character-controller/layer-manager/
https://opsive.com/support/documentation/ultimate-character-controller/layer-manager/

| 21

component necessary for the Ultimate Character Controller to function. These objects can
easily be created within the Setup Manager (Tools -> Ultimate Character Controller -> Main
Manager, then select Setup):

To get started click the “Add Managers” button. This will add the “Game” GameObject to
the scene with all of the necessary scene-level components. The Camera Controller can then
be setup by clicking the “Setup Camera” button. Make sure you first select the perspective
and view type that you’d like to use.

The Setup Manager can also setup the default UI and virtual controls but this is not
required to get started. If you do add the UI or virtual controls you can later customize it to
fit the style of your game.

Character Creation
The character can be created using the Character Manager from the Tools -> Ultimate
Character Controller -> Character Manager menu option. This will open an editor window
that acts as the central hub for any object creation/updating related editor scripts.

| 22

At the moment most of the options are disabled because a character hasn’t been selected.
Drag the Nolan model (in the Opsive/Ultimate Character Controller/Demo/Models folder)
into your scene and assign it to the Character field.

Once the character has been selected you can press the Build Character button and all of
the required components and setup will be added.

If you are creating a first person or both character there are two more steps required:

| 23

When the first person camera renders it will render any objects in the First Person
Arms field last. This will allow the arms to always be in front of the objects and will
prevent clipping. This field can be left blank and instead added when creating the
item.
Unless the character model was specifically designed for a first person view, the model
is going to have objects that should be hidden when the first person view is active such
as the character’s head and arms. Any object that should be hidden when the first
person view is active should be specified under the Third Person Objects field. This
field will automatically resize when a new object has been added. If your character
model does not have the head/arms separated and you don’t have access to the
original source file you can separate the objects with a tool such as the FPS Mesh Tool.

If the Build Character button is pressed all of the components will be added to the character
and it can be played within the game. Here’s a look at the character in first person view
with the objects hidden specified by the Third Person Objects field.

https://opsive.com/support/documentation/ultimate-character-controller/camera/view-types/included-view-types/first-person/
https://opsive.com/support/documentation/ultimate-character-controller/getting-started/setup/item-creation/
https://assetstore.unity.com/packages/tools/modeling/fps-mesh-tool-28006?aid=1100lGdc

| 24

More details on each Character Builder option can be found on this page.

Item Type Creation
Item Types are used to identify a particular item that the character can carry. Item Types
can also represent the ammo in an assault rifle or the number of grenades that are
remaining. Item Types are part of an Item Collection which is a grouping of Item Types.
Item Types can be managed within the Item Type Manager:

https://opsive.com/support/documentation/ultimate-character-controller/editors/character/

| 25

Let’s create a new Item Type that will be used by the weapon that we will create in the next
section. The first step that should be performed is that the “Create” button should be
selected to create a new Item Collection. An Item Collection stores the ItemTypes and by
creating a new Item Collection you’ll ensure that any Item Type customizations don’t get
overwritten by any updates. Next, under the Name field at the top of the Item Type manager
type in “MyAssaultRifle” and press “Add”. A new ItemType of MyAssaultRifle will appear in
the list. The category of the new ItemType should be set to “Items”. This category is used by
the Item Set Manager.

https://opsive.com/support/documentation/ultimate-character-controller/inventory/item-sets/

| 26

The assault rifle will need to fire bullets so create a second Item Type called
“MyAssaultRifleBullet”:

Item Creation
Items are objects that the character can carry, ranging from a flashlight to a rocket
launcher. Items can be created from the Item Manager which can be opened from the Tools
-> Ultimate Character Controller -> Items Manager menu option.

Start to fill in the following fields:

| 27

Name: MyAssaultRifle
Item Definition: MyAssaultRifle. This is the ItemType that was created on this page.
Character: Nolan. This is the same character that was created on this page.
Animator Item ID: 1. This number matches the ItemID parameter within the Animator
Controller. Default values are located on this page.

The next step depends on if you are creating a first or third person item. If your character is
going to be an AI agent or part of a multiplayer game the Third Person Visible Item field
should be specified even if your game is a first person game.

For an item used in the first person perspective the following fields should be filled out:

First Person Base: NolanFirstPersonArms. This object is rendered on the screen
holding the object. This is normally the character’s arms. This should be a separate
object so it can be activated independently of the base character model. Items can use
existing First Person Objects or create a new object can be used for each item. In most
cases it is easier to use an existing object for multiple items. This object should be
dragged into the scene so it can be modified before the item is built.
First Person Base Animator Controller: FirstPersonArmsDemo. This is the Animator
Controller that the First Person Object uses. This Animator Controller should have the
same parameters as the Animator Controller used by the base character. This field will
not be visible if the First Person Object has already been setup by the Item Manager.
First Person Visible Item: AssaultRifle. This is the actual item model.
Item Parent: ORG-hand_R. This is our character’s right hand, a child of the First
Person Object. This is the object that the First Person Visible Item will be parented to.
Animator Controller: AssaultRifle. This is the Animator Controller that is added to the
item and will show the assault rifle being used or reloaded.

https://opsive.com/support/documentation/ultimate-character-controller/getting-started/setup/item-creation/
https://opsive.com/support/documentation/ultimate-character-controller/getting-started/setup/character-creation/
https://opsive.com/support/documentation/ultimate-character-controller/animation/default-animator-values/

| 28

Before we can continue the Visible Item must be parented to an ItemSlot so the inventory
knows which item to equip/unequip. Once the Add ItemSlot button is pressed a new “Items”
GameObject will be created and the First Person Visible Item will use that new GameObject
for the Item Parent. Ensure your First Person Base object is within the scene in order to be
able to add the ItemSlot.

The remaining first person field, First Person Visible Item Animator Controller, specifies the
Animator Controller that the visible item should use. This Animator Controller will animate
the assault rifle (such as when it is fired).

Third person items are parented to the actual character model so they are easier to setup:

Third Person Visible Item: AssaultRifle. This is the actual item model.
Third Person Hand: Right. This is the object that the Third Person Object is parented
to. If the character is not humanoid then the object needs to be manually specified.
Third Person Animator Controller: AssaultRifle. This is the Animator Controller that is
added to the item and will show the assault rifle being used or reloaded. It is optional
but adds a nice polish to the third person view.

The last section that needs to be specified relates to the action types. Actions perform the
actual interaction with the item, such as firing a bullet or slashing a sword. Multiple actions
can be added to a single item but for this example we just want the item to shoot so the
following values can be specified:

Action Type: Shootable Weapon. The assault rifle should be able to shoot bullets.
Consumable Item Definition: MyAssaultRifleBullet. This is the same ItemType that was
previously created.

The State Configuration field can be left blank. Once you have filled in all of the field values
the builder should look like:

https://opsive.com/support/documentation/ultimate-character-controller/items/actions/

| 29

Go ahead and click “Build Item”. You’ll notice that the assault rifle has now been added to
the character, but it is positioned incorrectly in both the first and third person character’s
hand.

| 30

The item position can be adjusted by pressing play within Unity and adjusting the position
and rotation of the item’s transform component. Once you stop playing you can then paste
the values back into the Transform component. Here are the values that we are using for
the assault rifle:

This transform is set on the actual Assault Rifle object located underneath the character’s
rig or arms hierarchy. The first person assault rifle is located at: Nolan/First Person
Objects/NolanFirstPersonArms/rig/ORG-shoulder_R/ORG-upper_arm_R/ORG-

| 31

forearm_R/ORG-hand_R/Items/MyAssaultRifle. The third person assault rifle has a similar
path: Nolan/rig/root/ORG-hips/ORG-spine/ORG-chest/ORG-shoulder_R/ORG-
upper_arm_R/ORG-forearm_R/ORG-hand_R/Items/MyAssaultRifle.

After you hit play the assault rifle will be positioned correctly, but it will be in the incorrect
location for the first person view. This is because the new assault rifle item controls the
location of the first person arms (the First Person Object value from the Item Builder) and
the default location probably won’t fit your new item. This can be adjusted within the First
Person Perspective Item component of the MyAssaultRifle object under
Nolan/Items/MyAssaultRifle. Most of the properties that you edit for the assault rifle will be
located on this object. In this case we want to adjust the Position Offset and Position Exist
Offset to:

Now when you hit play the assault rifle should be positioned correct for both first and third
person! Further details on the Item Manager can be found on this page.

Configurations

The images below show some other common item configurations.

Sword

Similar to the assault rifle, except no Animator Controller is specified.

| 32

Body

The body configuration does not include any visible items.

Magic

The magic configuration is similar to the sword, except the visible items are empty
GameObjects.

| 33

Empty First Person Visible Item

For first person items the visible item can be attached to the base object. In these
circumstances no first person visible item needs to be specified.

| 34

Organization
The Ultimate Character Controller is the parent asset for a set of child assets. At their core
each asset shares base functionality which is then extended based on the imported asset.
The Ultimate Character Controller supports switching between first and third person
perspective in addition to supporting a wide variety of items: shooting, melee, throwable,
and static. If you have the First Person Controller or the Third Person Controller then only
one perspective is supported while all of the items are supported. UFPS, UTPS, UFPM,
UTPM only support one perspective and a subset of items. If at any point you’d like to add
support for a different perspective or more items in your game you can import the asset
which adds that functionality.

At a high level the following functionality is included in each asset:

UFPS UTPS UFPM UTPM First Person
Controller

Third Person
Controller

Ultimate
Character
Controller

First Person
Perspective ✓ ✗ ✓ ✗ ✓ ✗ ✓

Third Person
Perspective ✗ ✓ ✗ ✓ ✗ ✓ ✓

Shootable Weapons ✓ ✓ ✗ ✗ ✓ ✓ ✓
Melee Weapons ✗ ✗ ✓ ✓ ✓ ✓ ✓
Shield ✗ ✗ ✓ ✓ ✓ ✓ ✓
Throwable Items ✓ ✓ ✓ ✓ ✓ ✓ ✓
AI Ready ✓ ✓ ✓ ✓ ✓ ✓ ✓
Multiplayer Ready ✓ ✓ ✓ ✓ ✓ ✓ ✓
VR Ready ✓ ✓ ✓ ✓ ✓ ✓ ✓

Scripting API

The API for the character controller can be found using the Object Browser of your IDE. We
are using the Object Browser for API documentation because it is always up to date for the
current version that you are using. It also is interactive so it easy to navigate through the
API.

If the Object Browser does not generate the documentation for the classes you can
regenerate the project file from the Unity Preferences:

https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/use-the-object-browser

| 35

Component Overview

The main component responsible for moving the character is the Ultimate Character
Locomotion. At a low level this component is responsible for collision detection, slopes,
stairs, moving platforms, root motion, etc. Higher level this component is also responsible
for the movement types, abilities, and effects system. The Ultimate Character Locomotion
component specifies its own gravity allowing for situations like Super Mario Galaxy where
the character walks around a spherical planet. The component also has its own time system
allowing for the character to slow down while the rest of the world plays at a normal speed.

Movement Types, Abilities, and Effects offer an infinite amount of flexibility with the
Ultimate Character Locomotion. Movement Types define how the character moves. Example

| 36

Movement Types are a First Person Combat Movement Type which moves the character in a
first person view or the Top Down Movement Type which allows for movement while the
camera is looking down on the character.

The Ability system is an extremely powerful system and allows for the character to perform
entirely new functionality without having to make any changes to the Ultimate Character
Locomotion component. Abilities can be extremely simple (such as one which plays a
random idle animation) or extremely complex (such as climbing over a mountain). The Effect
system can be thought of as a lightweight ability and they allow for any effects related to the
character such as shaking the camera.

The Ultimate Character Locomotion component receives input from the Ultimate Character
Locomotion Handler. If the character is an AI agent or a remote player on the network then
the handler component disables itself so the character can move according to the AI or
remote player input.

The Ultimate Character Locomotion component is a deterministic kinematic controller. This
makes it especially appropriate to use over the network in which case client-side predication
and server reconciliation can be used to ensure ultra-smooth movement. If character
animations are necessary the Animator Monitor component is used which interacts with
Unity’s Animator component.

Any object that the character can interact with (equip, hold, shoot, etc.) are called Items.
When switching between first and third person perspectives the item’s model is changed.
The component responsible for managing this model is called First Person Perspective Item
or Third Person Perspective Item depending on the perspective. The First Person Visible
Item component is responsible for the movement of the first person item using the powerful
spring system. The spring system allows for procedurally generated motion and is
responsible for the bobs, sways, and shakes in a first person view.

The components responsible for interaction with items are called Item Actions. Examples
include the Shootable Weapon component, the Melee Weapon component, or the Shield
component. Multiple Item Action components can be added to a single item allowing for a
single item to be able to shoot and melee, or shoot a bullet and shoot a projectile, for
example.

Items are identified by their Item Definitions. Item Types inherit Item Definitions and are
used by the character controller. Item Definitions allow the controller to be integrated with
the Ultimate Inventory System. Item Types are a representation of Items and are used by
the Inventory and Item Set Manager components. The Inventory is an optional component
which stores the amount of Item Types the character has. If no Inventory is added to the
character then an unlimited number of Item Types can be used. The Item Set Manager is
responsible for ensuring the correct item is equipped. Multiple categories can be specified
which allows for cases such as Halo where the grenades can be switched independently
from the main weapons.

The Attribute Manager is a versatile component that can be added to the character which
describes a set of values that change over time. The Health component uses the Attribute
Manager in order to determine the amount of health or shield the character has remaining.
The Attribute Manager can be used to describe any character property including stamina,

| 37

hunger, thirst, etc.

As the character is moving around in the world the Character IK component will position the
limbs to prevent clipping with other objects. The Character IK component goes along with
the Character Foot Effects component which uses the Surface System to spawn the correct
effects for the feet. The Surface System is a generic effect spawning system which can
spawn effects (decals, particles, audio, etc.) based on the type of impact. For example, if the
character shoots a wood crate some wood particles may fall off of the crate, or if grass is hit
then some grass blades may fly into the air. The Surface System goes along with the Decal
Manager which is responsible for placing any decals, whether that is bullet holes or foot
step effects.

Object Pooling is used to reduce the number of allocations necessary which increases
performance. If an event needs to occur in the future the Scheduler is responsible for
invoking that event. There is a preset system which for allows component values to be
changed at runtime based on the current state. For example, the Zoom state will decrease
the camera’s field of view.

The camera is controlled by the Camera Controller and the Camera Controller is responsible
for managing the different View Types. The View Type describes how the camera should
move and can work with the spring system for movements such as bobs, sways, or recoils. In
a third person perspective the Object Fader component is added to the camera’s
GameObject which allows for materials to fade based on the camera position (to prevent the
camera from looking inside the character). The Aim Assist component allows the camera to
target a specified GameObject.

Editors

Setup
The Setup Manager contains options for setting up your project and scene. These options
will only need to be run once when you are creating a new project or a new scene. The
Setup Manager can be accessed via Tools -> Opsive -> Ultimate Character Controller ->
Main Manager.

Project

When the Ultimate Character Controller is first imported a dialog will appear if you want to
update the input manager and the layers. If you select no to either of these options (or
would like to start fresh with these settings) then you can access them again through the
Project tab of the Setup Manager.

| 38

Scene

The scene tab contains the options for each scene.

Manager Setup

The Ultimate Character Controller uses a set of scene level managers for various tasks such
as the object pool or surface manager. These managers should be added to the scene
initially and will be placed on the “Game” GameObject within the scene.

Camera Setup

If the character is controlled by a player (versus being an AI or networked character) then it
will most likely have a camera following it. The Camera Setup button will add the camera
and necessary components to the scene. If a camera is already within the scene and has the
“MainCamera” tag then that camera will be used.

The State Configuration field allows for the camera to be preconfigured with already-
defined values. This is useful if you have a set of default camera settings that you like to use
and want to apply it to a new camera. See the State Configuration page for more
information.

UI Setup

The UI Setup button will create a Canvas if there isn’t already one within the scene and
instantiate the Monitors prefab from the Opsive/UltimateCharacterController/Demo/UI
directory. This prefab gives a good starting point for you to start customizing your UI.

Virtual Controls Setup

If you are on a mobile platform then you will likely want to control the character via virtual
controls. If you click the Add Virtual Controls button then the manager will instantiate the
VirtualControls prefab from the Opsive/UltimateCharacterController/Demo/UI directory.
This prefab contains an example of using a virtual joystick, touchpad, and button on the
screen.

https://opsive.com/support/documentation/ultimate-character-controller/editors/state-configuration/
https://docs.unity3d.com/Manual/UICanvas.html

| 39

Character
The Character Manager will setup a character model to work with the Ultimate Character
Controller. Both humanoid and generic models are supported. The Character Manager can
be accessed from the Tools -> Opsive -> Ultimate Character Controller -> Character
Manager menu option. When the manager is opened there are two tabs: New Character and
Existing Character.

New Character

The New Character tab will create a new character so it can work with the Ultimate
Character Controller. The Quick Start guide can be used for quickly setting up a new
character. This page will go more in depth for each option.

Perspective

The Perspective field allows you to select a first, third, or both perspective. In order for the
perspective to be selected you must have the corresponding asset imported. The both option
requires both a first person perspective and third person perspective asset to be imported.
See the Component Organization page for more details.

First/Third Person Movement

Specifies the default Movement Type for the character. More Movement Types can be added
after the character has been created.

Start Perspective

If the Perspective field is Both, this field specifies which perspective the character should
start in. When the character is built the correct movement type will be activated based on
the start perspective. The activated movement type should match the active view type on
the camera controller.

Character

A reference to the character model. This field can be left empty if you’re using a first person
perspective and don’t want to have a body/legs.

Animator

This field is required for third person characters, AI characters, or characters that are going
to be used on the network. If your character is a humanoid then it can use animation
retargeting and use the Animator Controller included with the controller. Generic
characters require their own Animator Controller to be setup.

First Person Arms

Visible if using a first person perspective. When the first person items are created they are
drawn first by the camera. This field specifics the arms that should be drawn. Multiple items

https://opsive.com/support/documentation/ultimate-character-controller/getting-started/setup/character-creation/
https://opsive.com/support/documentation/ultimate-character-controller/organization/
https://opsive.com/support/documentation/ultimate-character-controller/character/movement-types/
https://docs.unity3d.com/Manual/Retargeting.html
https://docs.unity3d.com/Manual/Retargeting.html
https://opsive.com/support/documentation/ultimate-character-controller/character/generic-character/
https://opsive.com/support/documentation/ultimate-character-controller/character/generic-character/

| 40

can specify the same set of arms, or each item can use their own set of arms.

Third Person Objects

Visible if using a first person perspective. This field allows you to specify any object that
should be hidden when the first person view is active. In most cases this will include the
character’s head and arms. This field will automatically resize when a new object has been
added. If your character model does not have the head/arms separated and you don’t have
access to the original source file you can separate the objects with a tool such as the FPS
Mesh Tool.

Standard Abilities

If enabled the character will have the Jump, Fall, Move Towards, Item Equip Verifier, Speed
Change, and Height Change abilities added to it.

AI Agent

Allows the character to be specified that it will be used as an AI agent. AI agents do not
need certain components that check for player input such as the Ultimate Character
Locomotion Handler component. With this option enabled it will also not add the Unity Input
component because the AI will be controlling the input rather then an external input source
such as a keyboard or controller.

This option does not actually add any AI to the character, it just sets up the character to be
able to be used with an AI solution (such as Behavior Designer).

NavMeshAgent

If AI Agent is selected, the NavMeshAgent field will add the NavMeshAgent Movement
ability to the character if it is enabled. This allows your character to be used with Unity’s
NavMesh.

Items

Will the character carry items? If this option is enabled then the item related components
such as the Inventory will be added.

Item Collection

Specifies the location of the Item Collection asset if the Items field is enabled.

Health

This option should be enabled if the character has any attributes such as health, shield, or
stamina.

Unity IK

Should the character use Unity’s Inverse Kinematics system? Unity’s IK system does not

https://assetstore.unity.com/packages/tools/modeling/fps-mesh-tool-28006?aid=1100lGdc
https://assetstore.unity.com/packages/tools/modeling/fps-mesh-tool-28006?aid=1100lGdc
https://docs.unity3d.com/Manual/InverseKinematics.html

| 41

support generics so your character must be a humanoid to use it.

Foot Effects

Specifies if the character should contain any foot effects such as footprints. This uses the
Surface System.

Ragdoll

If the Ragdoll toggle is enabled then Unity’s Ragdoll Creator will open after clicking Build
Character. If your character is a humanoid then the values will automatically be filled in.

State Configuration

Allows for the character to be preconfigured with already defined values. This is useful if
you have a set of default character settings that you like to use and want to apply the same
values to a new character. See the State Configuration page for more information.

Existing Character

The Existing Character options are a subset of the New Character options. These options
allow you to easily modify a character which has already been created. To get started you
must input the existing character in the Character field. An error will appear within the
window if your character isn’t an Ultimate Character Controller character.

After you have made your selections you can click the Update Character button. This will
apply the changes to the character.

https://opsive.com/support/documentation/ultimate-character-controller/surface-system/
https://opsive.com/support/documentation/ultimate-character-controller/editors/state-configuration/

| 42

Item Types
The Item Type Manager allows for the creation of new Item Types and Categories. Item
Types are used by the Inventory system to identify a specific Item. Categories are used to
group Item Types within the Item Set Manager. The Item Type Manager can be accessed
from the Tools -> Opsive -> Ultimate Character Controller -> Item Type Manager menu
option. This window is separated into two tabs: Item Types and Categories.

Item Collection

When an Item Type or Category is created it is added to an Item Collection. An Item
Collection is a storage container for the Item Types and Categories. When you open the Item
Type Manager for the first time it will show the Item Collection from the included demo
scene but you can change this to a new Item Collection for your game:

The same Item Collection should be used throughout all of your project. If your game
contains multiple characters (such as AI agents) they should all use the same Item
Collection. We recommend that you create a new Item Collection specifically for your
project. This will prevent any Ultimate Character Controller updates from conflicting with
any changes that you have made.

Item Types

Item Types are a representation of an Item. A listing of all of the Item Types from the
specified Item Collection will appear within the manager:

https://opsive.com/support/documentation/ultimate-character-controller/inventory/item-types/
https://opsive.com/support/documentation/ultimate-character-controller/inventory/item-types/
https://opsive.com/support/documentation/ultimate-character-controller/inventory/item-sets/

| 43

New Item Types can be added by specifying their name within the Name field. The field
directly beneath that allows for you to search for existing Item Types. Each Item Type row
contains three buttons:

The leftmost button will identify the location of the actual Item Type asset. This asset will be
a child of the Item Collection.
The center button will duplicate the current Item Type.
The rightmost button will delete the current Item Type.

The Item Type row will expand if you click on it revealing more options:

| 44

Name

The name of the Item Type. This name must be a unique name within the Item Collection.

Description

A friendly description of what the Item Type is used for.

Category

The Category that the Item Type belongs to. A single Item Type can belong to any number of
Categories. If the Item Type is consumable (such as an assault rifle bullet) then it does not
need to belong to a category. Categories are used by the Item Set Manager.

Capacity

The maximum number of the Item Type that the inventory can carry.

Categories

Categories define a grouping of Item Types and are primarily used by the Item Set Manager.
Similar to Item Types, Categories must belong to an Item Collection. Once an Item
Collection is defined you’ll be able to create new categories, as well as see a listing of the
existing categories.

Each Category row contains two buttons:

The left button will duplicate the current Category.
The right button will delete the current Category.

| 45

Clicking on the Category row will allow you to edit the category name.

Name

The name of the Category. This name must be a unique name within the Item Collection.

Item
The Item Manager will setup an Item for the Ultimate Character Controller. The Item
Manager can be accessed from the Tools -> Opsive -> Ultimate Character Controller ->
Item Manager menu option. When the manager is opened there are two tabs: New Item and
Existing Item.

New Item

The New Item tab allows new items to be created using the Item Manager. The Quick Start
guide can be used for quickly setting up a new item. This page will give more details on
each option.

Name

Specifies the name of the item. It is recommended that this be a unique name though it is
not required.

Item Definition

The Item Definition that the Item should use. Item Definitions are the parent class of Item
Types which are used by the character controller. Item Types must first be created within
the Item Type Manager and must be unique for each slot. As an example, if you are dual
wielding pistols each pistol can use the same Pistol Item Type, but each pistol must be in a
different slot.

Character

Specifies the character that the Item should be added to. This field should be empty if the
item will be added at runtime.

Add To Default Loadout

If a character is specified the Item Type can automatically be added to the Inventory’s
Default Loadout.

Slot ID

The ID of the slot that the Item should occupy. The Item will be parented to the Item Slot
component for the corresponding perspective. The Slot ID must match for both first and
third person perspective.

https://opsive.com/support/documentation/ultimate-character-controller/quick-start/item-creation
https://opsive.com/support/documentation/ultimate-character-controller/editors/item-types/
https://opsive.com/support/documentation/ultimate-character-controller/items/runtime-pickup/

| 46

Animator Item ID

The ID of the Item within the Animator Controller. This ID is used by the SlotXItemID
parameter within the Animator Controller and it must be unique for each item. A listing of
default Item IDs can be found on this page.

Add First Person Item

Should the first person item perspective be added?

First Person Base

A reference to the base object that should be used by the first person item. This will usually
be the character’s separated arms. A single object can be used for multiple Items. If a First
Person Visible Item is specified this object should be within the scene so the Item Slot can
be specified.

First Person Base Animator Controller

A reference to the Animator Controller used by the First Person Base field. This Animator
Controller will only be active when the Item is equipped.

First Person Visible Item

Specifies the Item object that is actually visible and rendered to the screen, such as the
assault rifle or sword. This field should be left blank if you are adding an item that is part of
the character’s body such as a fist for punching.

First Person Visible Item Parent

Specifies the object that the First Person Visible Item should be parented to. If the First
Person Object has not been setup to be used by items before then when you first specify the
First Person Visible Item you’ll get an error saying the Item Parent needs to be specified:

In this example the pistol should be parented to the right hand so we’ll specify that for the
parent:

The Item Parent must be a child of the First Person Object. As soon as the Add ItemSlot
button is pressed the error should go away:

https://opsive.com/support/documentation/ultimate-character-controller/animation/default-animator-values/

| 47

First Person Visible Item Animator Controller

Specifies the Animator Controller that should be used by the First Person Visible Item.

Add Third Person Item

Should the third person item perspective be added?

Third Person Visible Item

Specifies the third person item object. This is the object that will be visible and rendered to
the screen, such as the assault rifle or sword.

Third Person Animator Controller

Specifies the Animator Controller that should be used by the Third Person Visible Item.

Action Type

A drop down field which allows you to specify which Item Action should be added. More
Item Actions can be added to the Item through the Existing Item tab.

State Configuration

Allows for the item to be preconfigured with already defined values. This is useful if you
have a specific type of item that has already been created and you’d like to apply the same
values to the new item. See the State Configuration page for more information.

Existing Item

The Existing Item tab allows you to modify Items that have already been created. When the
tab is first opened the Item field is the only active field:

Once an Item has been specified the values will be populated:

https://opsive.com/support/documentation/ultimate-character-controller/items/actions/
https://opsive.com/support/documentation/ultimate-character-controller/editors/state-configuration/

| 48

Most of the fields are similar to the New Item fields but the following are new:

Remove Item

This will remove the entire Item from the character. This cannot be undone so ensure you
want to delete the item.

Add Action

Adds a new Item Action to the Item. If the action uses a Consumable Item Definition then
that Item Definition can be specified in this window.

Remove Action

Removes an existing Item Action already on the item. The Action ID is specified allowing you
to identify which Item Action is being removed.

Remove First Person

Removes the objects related to the first person perspective.

Remove Third Person

Removes the objects related to the third person perspective.

Object
The Object Manager allows you to conveniently create the small objects such as Item
Pickups or Shells. The Object Manager can be accessed from the Tools -> Opsive ->
Ultimate Character Controller -> Object Manager menu option.

| 49

The Object Manager supports the creation of the following object types:

Item Pickup
Dropped Item
Health Pickup
Projectile
Muzzle Flash
Smoke
Shell
Melee Trail
Grenade
Explosion
Magic Projectile
Particle

Each of these object types have a similar workflow: enter the object name, select the object
type, and select which GameObject it should use. The Object Manager will then save the
created object out to a prefab in the specified location. After the object has been created it
may need to be further edited so make sure you take a look at the documentation for that
object type.

As an example we will create a dropped item prefab for the knife item:

Open the Object Manager1.
Specify the Name, for this example we will use “KnifePickup”.2.
Specify the type of object to create, which is the Dropped Item.3.
Specify the GameObject that should be used. We will use the pistol model because that4.
is the object that should be dropped.
Select the “Build Object” button. A project path will need to be specified with the5.
location that the prefab should be saved.

The completed editor window looks like:

Integrations
The Integrations Manager will list all of the integrations that are available for the Ultimate
Character Controller. The manager will fetch the most recent list of integrations and
populate the window after it has finished loading. The Integrations Manager can be
accessed from the Tools -> Opsive -> Ultimate Character Controller -> Main Manager and
then clicking on the Integrations menu.

https://opsive.com/support/documentation/ultimate-character-controller/objects/item-pickup/
https://opsive.com/support/documentation/ultimate-character-controller/objects/object-pickup/item-pickup/
https://opsive.com/support/documentation/ultimate-character-controller/objects/object-pickup/health-pickup/
https://opsive.com/support/documentation/ultimate-character-controller/objects/trajectory-object/projectile/
https://opsive.com/support/documentation/ultimate-character-controller/items/actions/usable/shootable-weapon/
https://opsive.com/support/documentation/ultimate-character-controller/items/actions/usable/shootable-weapon/
https://opsive.com/support/documentation/ultimate-character-controller/objects/trajectory-object/shell/
https://opsive.com/support/documentation/ultimate-character-controller/items/actions/usable/melee-weapon/
https://opsive.com/support/documentation/ultimate-character-controller/objects/trajectory-object/grenades/
https://opsive.com/support/documentation/ultimate-character-controller/objects/explosions/
https://opsive.com/support/documentation/ultimate-character-controller/objects/trajectory-object/magic-projectile/editors/item-types/

| 50

The integration package can be downloaded by clicking on the Integration button next to
the asset name. You can view the asset on the Asset Store by clicking on the Asset Store
link.

If you are an Asset Store publisher and have added integration with the Ultimate Character
Controller please get in contact with us so we can add your asset to this list.

State Configuration

The State Configuration field within the Camera, Character, and Item builders allow you to
use a set of values that have already been setup for that object. When a State Configuration
asset file is specified you are able to select which profile you’d like to apply to your object.

When the object is built all of the values from that profile will be applied to your object. This
includes the default values for a component as well as any states that have been added to
the object. All of the profiles contained within the state configuration asset are visible in the
inspector if you select the state configuration asset file:

https://opsive.com/support/

| 51

New profiles can be created by dragging the object that you’d like to create into the Copy
From field and clicking the “Copy” button. The popup field immediately to the left of the
Copy From field allows you to select if you’d like to copy all of the default values and states,
just the default values, or just the states.

The section beneath the Copy From section allows you to view all of the existing profiles and
their states. The states use the preset system similar to how it is used at runtime. Clicking
on a preset will allow you to modify the values for that preset. A gray preset represents the
default values for that object and the state name cannot be edited. New State Configuration
assets can be created under the Create -> Ultimate Character Controller -> State
Configuration menu option.

Video

Character
The Ultimate Character Controller uses a kinematic, deterministic character controller. This
means that the movements can be predicted and they can also be replayed. This is
extremely useful in a networked environment where the server needs to ensure the position
and rotation are valid on the client. The Character Locomotion component is responsible for
the core movement and for the following:

https://opsive.com/support/documentation/ultimate-character-controller/state-system/presets/

| 52

Movement
Collision Detection
Root Motion
Wall Bouncing
Wall Gliding
Slopes
Stairs
Push Rigidbodies
Dynamic Gravity
Variable Time Scale
Capsule Collider and Sphere Collider support
Moving Platforms

The Character Locomotion component isn’t directly added to your character though – the
Ultimate Character Locomotion component is instead added. The Ultimate Character
Locomotion component inherits Character Locomotion and adds support for the following:

Movement Types
Abilities
Effects
Animator Knowledge

New characters should be built using the Character Manager. The Character Manager will
add all of the necessary components to your character, including the Ultimate Character
Locomotion component.

Editor Performance

If you have your character selected while the game is active you’ll see this warning at the
top of the Ultimate Character Locomotion inspector:

This warning appears because the character inspector components draw a lot of content to
the window. The Ultimate Character Controller does prevent content from being drawn if
it’s not seen but you may still notice a framerate drop when the character is selected in the
editor. Rest assured that this is specific to the editor so it does not affect runtime
performance at all.

Stairs

On the Ultimate Character Locomotion component the Max Step Height variable specifies
the maximum height that the character can step when moving up stairs. In order to ensure
smooth movement this value must be less than the radius of the character’s collider. If the
character should be able to step up taller stairs a transparent quad collider should be added
to the stairs. This collider should be placed at a slope angle across the top of the stairs. The
collider should then be assigned to the TransparentFX layer. With this setup the controller
will then use the Slope Limit value to determine if the character can walk up the stairs.

https://opsive.com/support/documentation/ultimate-character-controller/getting-started/setup/character-creation/

| 53

When the IK is positioned it will ignore this transparent collider and place the feet on the
actual steps.

API

The Ultimate Character Locomotion component works with the Kinematic Object Manager
to smoothly move the object. Because of this the standard Transform.SetPosition/Rotation
methods should not be used. Equivalent methods have been added to the Ultimate
Character Locomotion component and should be used instead.

using UnityEngine;
using Opsive.UltimateCharacterController.Character;

public class MyComponent : MonoBehaviour
{
 [Tooltip("A reference to the Ultimate Character Controller
character.")]
 [SerializeField] private GameObject m_Character;

 /// <summary>
 /// Set the position and deactivate the character.
 /// </summary>
 private void Start()
 {
 var characterLocomotion =
m_Character.GetComponent<UltimateCharacterLocomotion>();
 if (characterLocomotion != null) {
 characterLocomotion.SetPositionAndRotation(Vector3.zero,

| 54

Quaternion.identity);
 }
 }
}

The character can persist between scenes by marking the character GameObject as
DontDestroyOnLoad. When the character is marked as DontDestroyOnLoad the camera and
UI should also be marked with DontDestroyOnLoad. This will allow all of the references to
persist between scene loads.

private void Start()
{
 // Find the character. If the character does not exist then
instantiate a new character with DontDestroyOnLoad.
 var character =
FindObjectOfType<Character.UltimateCharacterLocomotion>();
 if (character == null) {
 character =
Instantiate(m_Character).GetComponent<Character.UltimateCharacterLocom
otion>();
 DontDestroyOnLoad(character.gameObject);
 }
 // Find the camera. If the camera does not exist then instantiate
a new camera with DontDestroyOnLoad.
 var camera = FindObjectOfType<Camera.CameraController>();
 if (camera == null) {
 camera =
Instantiate(m_Camera).GetComponent<Camera.CameraController>();
 // The camera needs to be aware of the instantiated character.
 camera.Character = character.gameObject;
 DontDestroyOnLoad(camera.gameObject);
 }
 // Find the active canvas. If the canvas does not exist then
instantiate a new canvas with DontDestroyOnLoad.
 var canvasScaler =
FindObjectOfType<UnityEngine.UI.CanvasScaler>();
 if (canvasScaler == null) {
 DontDestroyOnLoad(Instantiate(m_Canvas));
 }
}

Inspected Fields

Movement Type

The Movement Type controls the direction that the character rotates as well as the value of
the inputs. Multiple Movement Types can be added to a character but only a single
Movement Type is active at a time. The Movement Type can be changed with the state
system or by calling SetMovementType on the controller.

https://docs.unity3d.com/ScriptReference/Object.DontDestroyOnLoad.html
https://opsive.com/support/documentation/ultimate-character-controller/character/movement-types/
https://opsive.com/support/documentation/ultimate-character-controller/state-system/
https://opsive.com/support/documentation/ultimate-character-controller/state-system/

| 55

First Person Movement Type

The name of the active first person movement type.

Third Person Movement Type

The name of the active third person movement type.

First Person State Name

The name of the state that should be activated when the character is in a first person
perspective.

Third Person State Name

The name of the state that should be activated when the character is in a third person
perspective.

Update Location

Specifies the location that the object should be updated:

Update: The object will be updated within Unity’s Update loop. The Update loop is
framerate dependent so it is recommended that the framerate is limited using
Application.targetFrameRate.
FixedUpdate: The object will be updated within Unity’s FixedUpdate loop.

Use Root Motion Position

Should root motion be used to move the character?

Root Motion Speed Multiplier

If using root motion, applies a multiplier to the root motion delta position while on the
ground.

Root Motion Air Force Multiplier

If using root motion, applies a multiplier to the root motion delta position while in the air.

Use Root Motion Rotation

Should root motion be used to rotate the character?

Root Motion Rotation Multiplier

If using root motion, applies a multiplier to the root motion delta rotation.

Motor Rotation Speed

The rate at which the character can rotate. Only used by non-root motion characters.

https://docs.unity3d.com/ScriptReference/Application-targetFrameRate.html
https://docs.unity3d.com/Manual/RootMotion.html
https://docs.unity3d.com/Manual/RootMotion.html

| 56

Framerate Independent Force

Should forces be applied independent of the framerate? If false it will be applied
independent of time. This is only necessary for the Update loop.

Mass

The mass of the character. The mass is used to determine how much force to apply when
colliding with a Rigidbody.

Skin Width

Specifies the width of the characters skin, which is used for ground detection. The larger
the value the less distance between the character and ground is required for the character
to be considered grounded.

Slope Limit

The maximum slope angle that the character can traverse (in degrees).

Max Step height

The maximum object height that the character can step on top of. This value should be less
than the radius of any of the character’s colliders. The reason for this is to ensure your
character has a smooth movement when stepping. If the Max Step Height was greater than
the radius of the character’s colliders then there would be a large vertical jump as the
controller moves the character up in the step in a single frame.

Motor Acceleration

The rate at which the character’s motor force accelerates while on the ground. Only used by
non-root motion characters.

Motor Damping

The rate at which the character’s motor force decelerates while on the ground. Only used by
non-root motion characters.

Motor Airborne Acceleration

The rate at which the character’s motor force accelerates while in the air. Only used by non-
root motion characters.

Motor Airborne Damping

The rate at which the character’s motor force decelerates while in the air. Only used by non-
root motion characters.

Motor Backwards Multiplier

A multiplier which is applied to the motor while moving backwards.

| 57

Previous Acceleration Influence

A (0-1) value specifying the amount of influence the previous acceleration direction has on
the current velocity.

Adjust Motor Force On Slope

Should the motor force be adjusted while on a slope?

Motor Slope Force Up

If adjusting the motor force on a slope, the force multiplier when on an upward slope.

Motor Slope Force Down

If adjusting the motor force on a slope, the force multiplier when on a downward slope.

External Force Damping

The rate at which the character’s external force decelerates.

External Force Air Damping

The rate at which the character’s external force decelerates while in the air.

Stick To Ground

Should the character stick to the ground?

Stickiness

If the character is sticking to the ground, specifies how sticky the ground is. A higher value
means the ground is more sticky.

Time Scale

The local time scale of the character. The time scale of the character can be modified
independently of the global time scale.

Smoothed Bones

An array of bones that should be smoothed by the Kinematic Object Manager.

Moving State Name

The name of the state that should be activated when the character is moving.

Airborne State Name

The name of the state that should be activated when the character is airborne.

https://opsive.com/support/documentation/ultimate-character-controller/character/time/

| 58

Use Gravity

Should gravity be applied?

Gravity Direction

The normalized direction of the gravity force.

Gravity Magnitude

The amount of gravity force to apply.

Detect Horizontal Collisions

Should the character detect horizontal collisions? Disabling this will reduce the number of
casts that need to be performed and increase performance.

Detect Vertical Collisions

Should the character detect vertical collisions? Disabling this will reduce the number of
casts that need to be performed and increase performance.

Collider Layer Mask

The layers that can act as colliders for the character.

Max Collision Count

The maximum number of colliders that the character can detect.

Max Soft Force Frames

The maximum number of frames that the soft force can be distributed by.

Rotation Collision Check Count

The maximum number of collision checks that should be performed when rotating.

Max Overlap Iterations

The maximum number of iterations to detect collision overlaps.

Wall Glide Curve

A curve specifying the amount to move when gliding along a wall. The x variable represents
the dot product between the character look direction and wall normal. An x value of 0
means the character is looking directly at the wall. An x value of 1 indicates the character is
looking parallel to the wall.

| 59

Wall Bounce Modifier

A multiplier to apply when hitting a wall. Allows for the character to bounce off of a wall.

Stick To Moving Platform

Should the character stick to the moving platform? If false the character will inherit the
moving platform’s momentum when the platform stops quickly.

Moving Platform Separation Velocity

The velocity magnitude required for the character to separate from the moving platform due
to a sudden moving platform stop.

Min Horizontal Moving Platform Stick Speed

The maximum speed of the platform that the character should stick when the platform
collides with the character from a horizontal position.

Moving Platform Force Damping

The rate at which the character’s moving platform force decelerates when the character is
no longer on the platform.

Yaw Multiplier

Specifies how much to multiply the yaw parameter by when turning in place.

Moving Speed Parameter Value

Specifies the value of the Speed Parameter when the character is moving.

Abilities

Abilities allow the controller to be extended without having to change the core controller
code. Multiple abilities can be active at the same time and it is strongly recommended that
you create new abilities specific to your game as it will add new unique functionality.

Item Abilities

Item Abilities allow the controller to interact with any items that the character is carrying.

Effects

Effects can be considered lightweight abilities and they are used to provide effects that
affect the character or camera, such as shaking the camera during an earthquake or playing
a one off audio file.

https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/
https://opsive.com/support/documentation/ultimate-character-controller/character/item-abilities/
https://opsive.com/support/documentation/ultimate-character-controller/items/
https://opsive.com/support/documentation/ultimate-character-controller/character/effects/

| 60

Movement Types
Movement Types define the target rotation of the character as well as what horizontal and
forward inputs should be passed to the character. It is then up to the character controller to
act on this target rotation and input vector to actually move the character. Just because a
value is passed to the character controller doesn’t mean the controller will act on it. For
example, if the movement type says the character should move forward but there is a wall in
front of the character then the character will not move forward.

Look Source Error

The error below will appear if the Movement Type is not attached to a Look Source. If the
error is occurring in a single player game the Camera Controller can be attached as a Look
Source. The Local Look Source component is used for AI agents. For multiplayer characters
the networking implementation has its own remote look source.

Error: There is no look source attached to the character. Ensure the character
has a look source attached. For player characters the look source is the Camera
Controller, and AI agents use the Local Look Source.

Create New Movement Types

In most cases you don’t need to create a new Movement Type but if you do it’s a fairly easy
process. New Movement Types can be created by inheriting the MovementType class and
implementing one property and two methods:

/// <summary>
/// Property that returns true if the Movement Type is a first person
movement type.
/// </summary>
/// <returns>True if the movement type is a first person movement
type.</returns>
bool FirstPersonPerspective

/// <summary>
/// Returns the delta yaw rotation of the character.
/// </summary>
/// <param name="characterHorizontalMovement">The character's
horizontal movement.</param>
/// <param name="characterForwardMovement">The character's forward
movement.</param>
/// <param name="cameraHorizontalMovement">The camera's horizontal
movement.</param>
/// <param name="cameraVerticalMovement">The camera's vertical
movement.</param>
/// <returns>The delta yaw rotation of the character.</returns>
float GetDeltaYawRotation(float characterHorizontalMovement, float

https://opsive.com/support/documentation/ultimate-character-controller/getting-started/setup/scene-setup/
https://opsive.com/support/documentation/ultimate-character-controller/getting-started/setup/character-creation/

| 61

characterForwardMovement, float cameraHorizontalMovement, float
cameraVerticalMovement)

/// <summary>
/// Gets the controller's input vector relative to the movement type.
/// </summary>
/// <param name="inputVector">The current input vector.</param>
/// <returns>The updated input vector.</returns>
Vector2 GetInputVector(Vector2 inputVector)

GetDeltaYawRotation

The GetDeltaYawRotation method returns the difference between the character’s current
yaw rotation and the target yaw rotation. This rotation can depend on the camera’s rotation
or it can be completely independent of the camera.

GetInputVector

Returns the vector that will be used to actually move the character. The input vector is a
Vector2 with the x value representing the horizontal movement and the y value representing
forward movement. A lot of Movement Types just return the inputted vector but in some
cases (such as Top Down or 2.5D) the input vector should be adjusted based on the
camera’s rotation.

Example

The following Movement Type is an example of a complete movement type that prevents the
character from rotating and also does not modify the input vector. This means when the
character moves they will move relative to the character’s rotation.

using Opsive.UltimateCharacterController.Character.MovementTypes;

public class MyMovementType : MovementType
{
 public override bool FirstPersonPerspective { get { return false;
} }

 public override float GetDeltaYawRotation(float
characterHorizontalMovement, float characterForwardMovement, float
cameraHorizontalMovement, float cameraVerticalMovement)
 {
 return 0;
 }

 public override Vector2 GetInputVector(Vector2 inputVector)
 {
 return inputVector;
 }
}

| 62

Included Movement Types

First Person Combat
The First Person Combat movement type will move the character relative to the camera’s
direction. The character can strafe and move backwards as is typical with a first person
camera. The First Person Combat view type should be used in conjunction with this
movement type.

Input Character Results
Forward The character will move forward without changing rotation.
Left The character will strafe left without changing rotation.
Right The character will strafe right without changing rotation.
Backwards The character will move backwards without changing rotation.

First Person Free Look
The First Person Free Look movement type will allow the character to rotate and move
independently of the camera. This movement type is great when you want to allow the
character to observe the world without having to completely change directions. The First
Person Free Look view type should be used in conjunction with this movement type.

Input Character Results
Forward The character will move forward without changing rotation.
Left The character will strafe left without changing rotation.
Right The character will strafe right without changing rotation.
Backwards The character will move backwards without changing rotation.

Third Person Adventure
The Third Person Adventure movement type will move the character relative to the input in
relation to the camera. The character will always play the forward animation and cannot
strafe or play a backwards animation. The Third Person Adventure view type should be used
in conjunction with this movement type.

Input Character Results
Forward The character will move forward without changing rotation.

Left The character will play the forward animation while rotating to face the left
direction of the camera.

Right The character will play the forward animation while rotating to face the right
direction of the camera.

Backwards
The character will play the forward animation while rotating to face the
backwards direction of the camera. The character will end up walking towards
the camera in this case.

https://opsive.com/support/documentation/ultimate-character-controller/camera/view-types/included-view-types/first-person/combat/
https://opsive.com/support/documentation/ultimate-character-controller/camera/view-types/included-view-types/first-person/free-look/
https://opsive.com/support/documentation/ultimate-character-controller/camera/view-types/included-view-types/first-person/free-look/
https://opsive.com/support/documentation/ultimate-character-controller/camera/view-types/included-view-types/third-person/adventure/

| 63

Third Person Combat
The Third Person Combat movement type will move the character relative to the camera’s
direction. The character can strafe and move backwards and will not change rotation. The
Third Person Combat view type should be used in conjunction with this movement type.

Input Character Results
Forward The character will move forward without changing rotation.
Left The character will strafe left without changing rotation.
Right The character will strafe right without changing rotation.
Backwards The character will move backwards without changing rotation.

Third Person Four Legged
The Third Person Four Legged movement type allows the character to move as if they are
on four legs. This is most useful for generic characters. The character cannot strafe and will
rotate when moving left or right.

Input Character Results
Forward The character will move forward without changing rotation.
Left The character will turn left while changing both position and rotation.
Right The character will turn right while changing both position and rotation.
Backwards The character will move backwards without changing rotation.

Third Person Point & Click
The Point Click movement type will work with the Move Towards ability to move the
character to the clicked location.

Setup

A Point & Click character can be setup by performing the following:

Create a new character using the Character Manager. The perspective should be Third1.
Person and have a Movement Type value of PointClick.
Add a Pathfinding Movement ability (such as NavMeshAgent Movement) to the2.
character. The Pathfinding Movement ability should be positioned above the Move
Towards ability.
If you’d like the character to move at different speeds to the destination the Speed3.
Change ability should be added to the character.

Inspected Fields

Click Button Name

The name of the button which does the click.

https://opsive.com/support/documentation/ultimate-character-controller/camera/view-types/included-view-types/third-person/combat/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/move-towards/
https://opsive.com/support/documentation/ultimate-character-controller/getting-started/setup/character-creation/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/navmeshagent-movement/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/speed-change/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/speed-change/

| 64

Min Point Click Distance

The minimum distance required in order to move.

Move Speed

The speed of the character as they move towards the target. The SpeedChange ability must
be added to the character.

Run Max Squared Distance

The character will run towards the destination when the squared distance is greater than
the specified value.

Third Person Pseudo3D (2.5D)
The Pseudo3D (2.5D) movement type allows the character to move relative to a 2.5D
camera. This Movement Type has many options that can be configured to fine tune the
movement such as if the character should be able to move along the local z axis. An optional
Path can be used so the character will follow a cubic bezier curve. The Pseudo3D (2.5D)
view type should be used in conjunction with this movement type.

Input Character Results

Forward
If Allow Depth Movement is enabled the character will move in the forward
direction relative to the camera (away from the camera, into the scene). If
Allow Depth Movement is disabled then the character will not move.

Left
The character will move to the relative left direction of the camera. If Look In
Move Direction is enabled then the character will rotate in this direction as
well.

Right
The character will move to the relative right direction of the camera. If Look In
Move Direction is enabled then the character will rotate in this direction as
well.

Backwards
If Allow Depth Movement is enabled the character will move in the backwards
direction relative to the camera (into the camera). If Allow Depth Movement is
disabled then the character will not move.

Setup

A 2.5D character can be setup by performing the following:

Create a new character using the Character Manager. The perspective should be Third1.
Person and have a Movement Type value of Pseudo3D.
Ensure your camera is setup to use the Pseudo3D View Type.2.
Assign the character to the camera’s Character field.3.
Optionally setup the path that the character should follow (below).4.

Path

https://vimeo.com/106757336
https://opsive.com/support/documentation/ultimate-character-controller/camera/view-types/included-view-types/third-person-pseudo3d-2-5d/
https://opsive.com/support/documentation/ultimate-character-controller/getting-started/setup/character-creation/
https://opsive.com/support/documentation/ultimate-character-controller/getting-started/setup/scene-setup/

| 65

A curve can define the orientation that the camera faces as the character traverses the
scene. This path can be setup by doing the following:

Add a new GameObject to your scene that will be the container for the curve. Add the1.
Path component to this GameObject.
Click on the “Add Curve Segment” button under the path component. A new curve2.
segment will be added to the scene.
Adjust the endpoint positions of the curve. A new segment can be added by clicking on3.
the “Add Curve Segment” button again.
The start curve point will be colored green, and the end curve point will be colored4.
red. Points in the middle of the curve will be white.
Curve points can be adjusted by clicking on them. Endpoints have a single tangent5.
associated with them which can adjust the curve’s slope. Midpoints have two tangents
associated with it and is also used for adjusting the curve’s slope. The tangent can be
adjusted by first selecting an midpoint or endpoint and then selecting the smaller point

connected to it.
Assign the newly created path to the Path field of the 2.5D Movement Type.6.
Add the Follow 2.5D Path ability to your character.7.

Inspected Fields

https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/follow-pseudo3d-2-5d-path/

| 66

Allow Depth Movement

Can the character move along the depth axis (the z axis relative to the camera)?

Look In Move Direction

Should the character look in the direction of movement?

Look Rotate Buffer

A small buffer used to prevent the character from quickly switching directions when the
mouse is near the character’s origin.

Path

The path that the character should orient towards. If null then the character will be oriented
towards the look source direction.

Third Person RPG
The Third Person RPG movement type uses a control scheme similar to the standard setup
of the RPG genre. The RPG view type should be used in conjunction with this movement
type. The Ultimate Character Locomotion Handler component should have the Horizontal
Input value set to the “Alt Horizontal” input mapping.

Input Character Results
Forward The character will move forward without changing rotation.

Left The character will strafe left without changing rotation. The default mapping is
the Q button.

Right The character will strafe right without changing rotation. The default mapping
is the E button.

Backwards The character will move backwards without changing rotation.

Rotate The character will turn left or right depending on the axis input values. The
default mapping is the middle mouse button.

Turn The character will turn left or right depending on the button input values. The
default mapping is the A and D button.

AutoMove The character will automatically move in the forward direction. The default
mapping is the F button.

Inspected Fields

Rotate Input Name

The name of the rotate input mapping.

Turn Input Name

The name of the turn input mapping.

https://opsive.com/support/documentation/ultimate-character-controller/camera/view-types/included-view-types/third-person/rpg

| 67

Turn Multiplier

The amount to multiply the turn value by.

Auto Move Input Name

The name of the auto move input mapping.

Third Person Top Down
The Top Down movement type allows the character to move relative to a top down camera.
If Look In Move Direction is enabled then the character will always face in the direction that
they are moving, otherwise the character will face the direction of the mouse. The Top
Down view type should be used in conjunction with this movement type.

It is recommended that the Previous Acceleration Influence on the Ultimate Character
Locomotion component be set to 0 to prevent the character from drifting while using the
Top Down movement type.

Input Character Results

Forward
The character will move up relative to the camera’s direction if Relative
Camera Movement is enabled, otherwise the character will move in the up
direction relative to the world axis.

Left
The character will move left relative to the camera’s direction if Relative
Camera Movement is enabled, otherwise the character will move in the left
direction relative to the world axis.

Right
The character will move right relative to the camera’s direction if Relative
Camera Movement is enabled, otherwise the character will move in the right
direction relative to the world axis.

Backwards
The character will move down relative to the camera’s direction if Relative
Camera Movement is enabled, otherwise the character will move in the down
direction relative to the world axis.

Inspected Fields

Relative Camera Movement

Should the character move relative to the camera’s direction?

Look In Move Direction

Should the character look in the direction of movement?

Abilities
The ability system is an extremely versatile system which allows you to add new
functionality to your character without having to modify the core character locomotion
system. Any “extra” character functionality within the Ultimate Character Controller is
implemented using the ability system – this includes jumping, restricting the character’s

https://opsive.com/support/documentation/ultimate-character-controller/camera/view-types/included-view-types/third-person-top-down/
https://opsive.com/support/documentation/ultimate-character-controller/camera/view-types/included-view-types/third-person-top-down/

| 68

rotation, or even firing a weapon. Unlike effects, abilities can use the Animator and they are
also synchronized across the network.

New abilities can be created by following this example. The ability system is designed to be
extensible so it is highly recommended that you create new abilities specific for your game.

Priority

Abilities use a priority system when added to the Ultimate Character Locomotion
component. The higher the ability is in the list, the higher priority it is. Consider this setup:

With this setup the Interact ability has a higher priority than the Die ability. The result of
this is that the die animation would not be able to play if the character gets killed while
interacting with an object. The Die ability should be above the Interact ability in order for
the die animation to play correctly while the character is interacting with an object.

If an ability should be able to be active at the same time as another ability – such as the
Speed Change ability, then the ability can override the IsConcurrent property and return
true. The priority system is not used with concurrent abilities.

Life Cycle

https://opsive.com/support/documentation/ultimate-character-controller/character/effects/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/new-ability/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/interact/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/die/

| 69

API

Abilities can be started/stopped manually from any script by getting a reference to the
Ultimate Character Locomotion component and then calling the TryStartAbility or
TryStopAbility method on that component. These methods require a reference to the ability
that will be started/stopped and that reference can be retrieved with GetAbility.

using UnityEngine;
using Opsive.UltimateCharacterController.Character;
using Opsive.UltimateCharacterController.Character.Abilities;

public class MyObject : MonoBehaviour
{
 [Tooltip("The character that should start and stop the jump
ability.")]
 [SerializeField] protected GameObject m_Character;

| 70

 /// <summary>
 /// Starts and stops the jump ability.
 /// </summary>
 private void Start()
 {
 var characterLocomotion =
m_Character.GetComponent<UltimateCharacterLocomotion>();
 var jumpAbility = characterLocomotion.GetAbility<Jump>();
 // Tries to start the jump ability. There are many cases where
the ability may not start,
 // such as if it doesn't have a high enough priority or if
CanStartAbility returns false.
 characterLocomotion.TryStartAbility(jumpAbility);

 // Stop the jump ability if it is active.
 if (jumpAbility.IsActive) {
 characterLocomotion.TryStopAbility(jumpAbility);
 }
 }
}

Events

When the ability starts or stops the “OnCharacterAbilityActive” event will be sent from the
built-in Event System. A corresponding Unity event will also be sent. The following example
will subscribe to this event from a new component:

using UnityEngine;
using Opsive.Shared.Events;
using Opsive.UltimateCharacterController.Character.Abilities;

public class MyObject : MonoBehaviour
{
 /// <summary>
 /// Initialize the default values.
 /// </summary>
 public void Awake()
 {
 EventHandler.RegisterEvent<Ability, bool>(gameObject,
"OnCharacterAbilityActive", OnAbilityActive);
 }

 /// <summary>
 /// The specified ability has started or stopped.
 /// </summary>
 /// <param name="ability">The ability that has been started or
stopped.</param>
 /// <param name="activated">Was the ability activated?</param>
 private void OnAbilityActive(Ability ability, bool activated)

https://opsive.com/support/documentation/ultimate-character-controller/programming-concepts/events/
https://unity3d.com/learn/tutorials/topics/scripting/events

| 71

 {
 Debug.Log(ability + " activated: " + activated);
 }

 /// <summary>
 /// The GameObject has been destroyed.
 /// </summary>
 public void OnDestroy()
 {
 EventHandler.UnregisterEvent<Ability, bool>(gameObject,
"OnCharacterAbilityActive", OnAbilityActive);
 }
}

Inspected Fields

Enabled

Can the ability be activated?

Start Type

Specifies how the ability can be started:

Automatic: The ability will try to be started every update.
Manual: The ability must be started with
UltimateCharacterLocomotion.TryStartAbility.
Button Down: The ability will start when the specified button is down.
Button Down Continuous: The ability will continuously check for a button down to
determine if the ability should start.
Double Press: The ability will start when the specified button is pressed twice.
Long Press: The ability will start when the specified button has been pressed for more
than the specified duration.
Tap: The ability will start when the specified button is quickly tapped.
Axis: The ability will start when the specified axis is a non-zero value.
Custom: The ability will start after a user defined starter has indicated that the ability
should start.

Stop Type

Specifies how the ability can be stopped:

Automatic: The ability will try to be stopped every update.
Manual: The ability must be started with UltimateCharacterLocomotion.TryStopAbility.
Button Up: The ability will stop when the specified button is up.
Button Down: The ability will stop when the specified button is down.
Button Toggle: The ability will stop when the same button has been pressed again
after the ability has started.
Long Press: The ability will stop when the specified button has been pressed for more
than the specified duration.

| 72

Axis: The ability stop when the specified axis is a non-zero value.

Input Names

The button name(s) that can start or stop the ability.

Long Press Duration

Specifies how long the button should be pressed down until the ability starts/stops. Only
used when the ability has a start/stop type of LongPress.

Wait For Long Press Release

Should the long press wait to be activated until the button has been released?

Attribute Modifier

Allows you to specify an attribute that the ability should start when active. One use for this
is applied to the Speed Change ability to give the character stamina.

State

Specifies the name of the state that the ability should use when active.

Append Item Definition Name

Should the Item Definition name be appended to the name of the state name?

Ability Index Parameter

Specifies the value to set the Ability Index parameter to (-1 will not set the parameter).

Start Audio Clip Set

A set of AudioClips that can be played when the ability is started.

Stop Audio Clip Set

A set of AudioClips that can be played when the ability is stopped.

Use Gravity

Should the character use gravity while the ability is active?

Use Root Motion Position

Can the character use root motion for positioning?

Use Root Motion Rotation

Can the character use root motion for rotation?

| 73

Allow Positional Input

Does the ability allow positional input?

Allow Rotational Input

Does the ability allow rotational input?

Detect Horizontal Collisions

Should the character detect horizontal collisions while the ability is active?

Detect Vertical Collisions

Should the character detect vertical collisions while the ability is active?

Animator Motion

A reference to the AnimatorMotion that the ability uses.

Allow Equipped Slots

Specifies which slots can have the item equipped when the ability is active.

Allow Item Definitions

An array of Item Definitions that are allowed to be equipped when the ability starts. Any
Item Definition can be equipped if no Item Definitions are specified.

Immediate Unequip

Should the items be unequipped immediately?

Reequip Slots

Should the ability equip the slots that were unequipped when the ability started?

Ability Indicator Text

The text that should be shown by the ability indicator when the ability can start.

Ability Indicator Icon

The sprite that should be drawn by the ability indicator when the ability can start.

Included Abilities

| 74

Align To Ground
The Align To Ground ability will orient the character to the direction of the ground’s normal.
A cast will be performed downward to detect the rotation that the character should orient
towards. The Distance determines the length of the cast. Depth Offset allows for multiple
raycasts to be used which allows the result to be averaged. This is most useful for long
generic characters (such as a horse) but it can also be used by humanoids to smooth the
result.

If the Depth Offset is zero a cast in the shape of all of the colliders added to the character
will be performed in the downward direction:

In this screenshot the cast is represented by the yellow line. Note that the cast is
represented by a line here but a capsule cast is actually being performed because a Capsule
Collider has been added to the character. The length of the cast is determined by Distance.

If the Depth Offset is not zero then two raycasts will be performed:

| 75

Similar to the last screenshot the casts are represented by the yellow line. In this situation a
raycast will always be performed with the specified offset value. The character orientation
will be determined by averaging the two raycast normal results.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Align To Ground ability. The ability is concurrent so the ability can be2.
positioned anywhere within the ability list.

Inspected Fields

Distance

The distance from the ground that the character should align itself to.

Depth Offset

The depth offset when checking the ground normal.

Normalize Direction

Should the direction from the align to ground depth offset be normalized? This is useful for
generic characters whose length is long.

| 76

Rotation Speed

Specifies the speed that the character can rotate to align to the ground.

Stop Gravity Direction

The direction of gravit that should be set when the ability stops. Set to Vector3.zero to
disable.

Align To Gravity Zone
The Align To Gravity Zone ability will orient the character to the direction of the gravity
zones. Gravity Zones are triggers which influence the gravity direction of the character. The
demo scene uses a Gravity Zone on each exterior planet:

When the ability is active and the character is within a Gravity Zone the character will
reorient according to the Gravity Zone’s influence. The character can be within multiple
Gravity Zones and the character will be oriented towards the average of all of the Gravity
Zone. Each Gravity Zone can have its own influence multiplier which in the image above it
allows the larger planet to influence the character more than the smaller planet.

The Gravity Zone is and abstract class that can be inherited to return a custom gravity
direction. The demo planets use a spherical Gravity Zone whose gravity direction is
determined by the pivot position of the object.

| 77

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Align To Gravity Zone ability. The ability is concurrent so the ability can be2.
positioned anywhere within the ability list.
Add a Gravity Zone to the object that should influence the character’s gravity. The3.
ability will automatically start when the character is within a Gravity Zone.

Inspected Fields

Rotation Speed

Specifies the speed that the character can rotate to align to the ground.

Stop Gravity Direction

The direction of gravit that should be set when the ability stops. Set to Vector3.zero to
disable.

Damage Visualization
The Damage Visualization ability will play a damage animation when the character takes
damage from an external source (such as a bullet or a sword) and not an internal source
(such as taking fall damage). The ability includes four take damage animations but can
easily be extended for other damage types.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Damage Visualization ability. This ability should be positioned near the top of2.
the list so it will override any abilities beneath it.

Adding New Damage Visualization Animations

There are two steps required in order to add new damage visualization animations:

The ability needs to detect which animation should be played.1.
The Animator Controller needs to have the new animations added to it.2.

Ability

When adding new functionality we recommend subclassing the abilities so it’s easier to
update when a new version of the Ultimate Character Controller is released. For this
situation you’ll want to subclass the Damage Visualization ability:

using Opsive.UltimateCharacterController.Character.Abilities;
public class MyDamageVisualizationAbility : DamageVisualization
{

| 78

}

When the ability starts it will call GetDamageTypeIndex to determine the AbilityIntData
Animator parameter value. Your custom damage visualization ability should override this
method and return a new value. In this example we will return a value of 4 if the character
takes a lot of damage.

Opsive.UltimateCharacterController.Character.Abilities;

public class MyDamageVisualizationAbility : DamageVisualization
{
 /// <summary>
 /// Returns the value that the AbilityIntData parameter should be
set to.
 /// </summary>
 /// <param name="amount">The amount of damage taken.</param>
 /// <param name="position">The position of the damage.</param>
 /// <param name="force">The amount of force applied to the
character.</param>
 /// <param name="attacker">The GameObject that damaged the
character.</param>
 /// <returns>The value that the AbilityIntData parameter should be
set to. A value of -1 will prevent the ability from
starting.</returns>
 protected override int GetDamageTypeIndex(float amount, Vector3
position, Vector3 force, GameObject attacker)
 {
 if (amount > 20) {
 return 4;
 }
 return base.GetReviveTypeIndex();
 }
}

Animator

Now that the custom ability has been created it is time to modify the Animator Controller so
the damage animation with a type of 4 can play. This can be done by creating a new state
within the Additive Layer -> Damage Visualization substate and transitioning to it when the
AbilityIntData parameter value is equal to 4:

https://unity3d.com/learn/tutorials/topics/animation/animator-controller?playlist=17099

| 79

Inspected Fields

Min Damage Amount

The minimum amount of damage required for the ability to start.

Damage Visualization Complete Event

Specifies if the ability should wait for the OnAnimatorDamageVisualizationComplete
animation event or wait the specified amount of time before interacting with the item.

Detect Ground Ability Base
Abstract class which determines if the ground object is a valid object. Similar to the Detect
Object Ability Base ability, the Ground Ability Base ability can use an Object ID or Layer
Mask to determine if the ground is a valid object. If the Object ID is used the ground object
should have the Object Identifier component with the same ID specified by the ability,
similar to the Detect Object Ability Base.

Inspected Fields

Object ID

The unique ID value of the Object Identifier component. A value of -1 indicates that this ID
should not be used.

Layer Mask

The layer mask of the ground object.

Ground Normal Sensitivity

The character is no longer over the ground if the dot product between the character’s up
direction and the ground normal is less than the sensitivity.

https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/

| 80

Angle Threshold

The maximum angle that the character can be relative to the forward direction of the object.

Move With Object

Should the character move with the ground object?

Detect Object Ability Base
The Detect Object Ability Base ability is an abstract class designed for any ability that needs
another object to start. This includes abilities such as picking up an object, vaulting,
climbing, interacting, etc. This ability doesn’t do anything besides detect when an object can
be interacted with by the character. The ability can filter the found objects using the Object
Identifier component.

Inspected Fields

Object Detection

The mask which specifies how the ability should detect other objects.

Trigger: Use a trigger to detect if the character is near an object
Charactercast: Use the character controllers to do a cast in order to detect if the
character is near an object.
Raycast: Use a raycast to detect if the character is near an object.
Spherecast: Use a spherecast to detect if the character is near an object.
Customcast: The ability will perform its own custom cast.

Multiple values can be selected, though in most cases just the Trigger or Charactercast
options will be sufficient.

Detect Layers

The LayerMask of the object or trigger that should be detected.

Use Look Position

Should the detection method use the Look Source position? If false the character position
will be used.

Use Look Direction

Should the detection method use the Look Source direction? If false the character direction
will be used.

Angle Threshold

The maximum angle that the character can be relative to the forward direction of the object.

https://opsive.com/support/documentation/ultimate-character-controller/objects/object-identifier/
https://opsive.com/support/documentation/ultimate-character-controller/objects/object-identifier/

| 81

Object ID

The unique ID value of the Object Identifier component. A value of -1 indicates that this ID
should not be used.

Cast Distance

The distance of the cast. Used if the Object Detection Mode is set to anything other then a
Trigger detection mode.

Cast Frame Interval

The number of frames that should elapse before another cast is performed. A value of 0 will
allow the cast to occur every frame.

Cast Offset

The offset applied to the raycast or spherecast.

Trigger Interaction

Specifies if the cast should interact with triggers.

Spherecast Radius

The radius of the spherecast.

Max Trigger Object Count

The maximum number of valid triggers that the ability can detect.

Move With Object

Should the character move with the detected object?

Drive
The drive ability allows the character to drive any vehicle that implements the IDriveSource
interface. This ability does not actually move the vehicle. This ability will move the character
to the driving location and then allow the vehicle to have control over the input.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Drive ability. The Drive ability should be positioned toward the top of the2.
ability list.
Add a component to the vehicle that implements the IDriveSource interface.3.
Add the Move Towards Location indicating where the character can enter or exit the4.
vehicle.

https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/move-towards-location/

| 82

Set the Driver Location on the IDriveSource component. This is the location that the5.
character should be positioned when the character is driving the vehicle.
Ensure the Update Location on the Ultimate Character Locomotion component is6.
correct. The character must update within the same loop (Update or FixedUpdate) as
the vehicle. The state system can be used to change the Update Location at runtime.

Drive Source Interface

The IDriveSource interface allows any vehicle able to be driven by the Drive ability. This
interface includes information about the vehicle such as the GameObject, Transform, and
the Transform that the character should be positioned to when they are driving the vehicle.

The AnimatorID property of the IDriveSource interface should return a unique animator
value for that vehicle. A single Drive ability can be used for any number of vehicles, and the
Animator can determine which drive animation to play based on the AnimatorID from the
IDriveSource. The drive animation state will be the added onto the current vehicle’s
Animator ID.

The IDriveSource contains methods that indicate when the character started to enter or exit
the vehicle, as well as when the character completed the vehicle entrance or exit. In the
demo scene the vehicle is enabled after the character has entered vehicle, and it is disabled
when the character starts to exit the vehicle.

In the demo project, the SkyCar script is a simple example of how to implement the
IDriveSource interface.

Animator ID

As mentioned in the previous section, a single Drive ability can be used for any number of
vehicles. The vehicle AnimatorID value should be in an increment of 10, such as 0, 10, 20,
30, … 110, 120, … 1500, 1510, etc. This will allow the character’s Animator to determine
which vehicle the character entered and what animation state they should be in. The
following are valid animation states:

Enter: The character is entering the vehicle.
Drive: The character is driving the vehicle.
Exit: The character is exiting the vehicle.

Enter has a value of 0, Drive has a value of 1, and Exit has a value of 2. This value is added
to the vehicle’s AnimatorID. As an example, if your vehicle has an AnimatorID value of 70,
when the character is entering the vehicle the character’s AbilityIntData Animator
parameter will have a value of 70 (70 + 0). When the character is driving the AbilityIntData
will be 71 (70 + 1), and when the character is exiting the AbilityIntData value will be 72 (70
+ 2).

Inspected Fields

Teleport Enter Exit

Should the character teleport for the enter and exit animations?

https://opsive.com/support/documentation/character-controller-pun-multiplayer-add-on/setup/character/
https://opsive.com/support/documentation/ultimate-character-controller/state-system/
https://opsive.com/support/documentation/ultimate-character-controller/animation/animator/animation-animator-structure/
https://opsive.com/support/documentation/ultimate-character-controller/animation/animator/animation-animator-structure/

| 83

Can Aim

Can the Drive ability aim?

Move Speed

The speed at which the character moves towards seat position.

Rotation Speed

The speed at which the character rotates towards seat position.

Disable Mesh Renderers

Should the SkinnedMeshRenderer be disabled when the character enters the vehicle?

Interact

The Interact ability is a versatile ability that allows the character to interface with another
object within the scene. Examples include opening a door or pressing a button. This ability
is designed to be used with any other object though so is not limited to just those two
examples. The Interact ability is a child of the Detect Object Ability Base so will inherit any
properties from it.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Interact ability. On the Interact ability the Object Detection enum should be2.
set to Trigger.
Decide which object the ability should interact with. In this example we are going to3.
use a moving platform: when the character interacts with the button it’ll start the
moving platform. A moving platform is already setup for this example. Ensure the
Moving Platform has Enable On Interact enabled.
Add the Interactable component to the button. The Interactable component is4.
responsible for performing the actual interaction. The Interact ability will look for this
component when deciding if an object can be interacted with.

The Interactable component now needs to know what object it should interact with.5.
Set the Targets field to 2 so two targets can be specified. The first target will be the
moving platform, and the second will be the button itself so the button press animation

https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/
https://opsive.com/support/documentation/ultimate-character-controller/moving-platforms/

| 84

can be played.
The moving platform should be specified as the first element within the Targets array.6.
The second element should be the button and for that we need to add a new
component: the Animated Interactable component. This component will play an
animation when the object is interacted with. An Animator should also be added to the
button so the Animated Interactable component can play the button press animation.
Taking a look at the InteractButton Animator Controller we’ll see that the button press7.
animation is started when the Press parameter is triggered. With this setup the
Animated Interactable component should specify:

Trigger Parameter: Press

Now both the moving platform and the button press Interactable Targets will respond8.
to the interact, but the ability needs to know where the character should be positioned
to actually press the button. For this we can add the Move Towards Location

component to the button.
For this example we want the button to be able to be interacted with when the9.
character is within a trigger. Under the Object Detection field of the Interact ability on
the character we’ll set a value of Trigger. A trigger should now be added to the button

https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/move-towards-location/

| 85

that the ability will detect.
The interact object is now ready to go! When the character enters the trigger the10.
Interact ability will be able to start. When the ability is started it’ll interact with the
Interactable component after the Interact Event has triggered. The ability will then
complete after the Interact Complete Event has triggered.

API

IInteractableTarget

New objects can be interacted with by implementing the IInteractableTarget interface. With
the IInteractableTarget the Interact/Interactable scripts do not need to be modified in order
to support a new interactable object. The IInteractableTarget interface contains two
methods that must be implemented:

/// <summary>
/// Can the target be interacted with?
/// </summary>
/// <returns>True if the target can be interacted with.</returns>
bool CanInteract();

/// <summary>
/// Interact with the target.
/// </summary>
void Interact();

CanInteract returns a bool indicating if the object can be interacted with. An object may not
be able to be interacted with if it has already been interacted with (such as a chest being

| 86

opened) or is currently being interacted with (such as a moving platform that is in the
process of moving). Interact will indicate that the interaction should start.

IInteractableMessage

When the character goes to interact with an object the ability can show a message
indicating to the user that an interaction is possible. This message is set via the Ability
Message Text field on the ability. For most abilities this text is static because the is only one
type of interaction. However, with the Interact ability, the type of interaction can change
based on the current game state.

Taking a look at the demo scene, the Interact ability that interacts with the fifth Interactable
(the Open Door Interact ability) can change the ability message between “PRESS F TO
OPEN DOOR” and “PRESS F TO CLOSE DOOR”. Notice the Ability Message Text has the
string “PRESS F TO {0} DOOR”. The Interact ability will look for the IInteractableMessage
interface on the Interactable object to display this string. String.Format is used so the
Ability Message Text must contain “{0}” in order for the IInteractableMessage to
appear.

The IInteractableMessage interface just contains one method that must be implemented in
order for the Interact ability to display the text.

/// <summary>
/// Returns the message that should be displayed when the object can
be interacted with.
/// </summary>
/// <returns>The message that should be displayed when the object can
be interacted with.</returns>
string AbilityMessage();

ShouldBlockAbilityStart

The Interact ability overrides Ability.ShouldBlockAbilityStart (see New Ability) to prevent all
Item Abilities from starting whilst an Interact ability is in progress, as well as any abilities
with a lower priority.

Inspected Fields

Interactable ID

The ID of the Interactable. A value of -1 indicates no ID. This value is used when the
character can interact with multiple objects. For example, in the demo scene the button has
an Interactable ID of 1 and the chest has an ID of 2.

Ability Int Data Value

The value of the AbilityIntData animator parameter.

https://docs.microsoft.com/en-us/dotnet/api/system.string.format?view=net-5.0
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/new-ability/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/item-abilities/

| 87

Interact Event

Specifies if the ability should wait for the OnAnimatorInteract animation event or wait the
specified amount of time before interacting with the item.

Interact Complete Event

Specifies if the ability should wait for the OnAnimatorInteractComplete animation event or
wait the specified amount of time before stopping the ability.

Look At
The Look At ability will use IK the have the character look at a point of interest. If there are
multiple points of interest the character will look at the closest object. The ability inherits
the Detect Object Ability Base ability allowing it to detect multiple triggers at a time.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Look At ability. On the Look At ability the Object Detection enum should be set2.
to Trigger.
Add the Object Identifier component to any of the trigger objects that the character3.
should be able to look at.
Set the ID of the Object Identifier component to a unique ID. This ID should then be4.
set under the Look At’s Object ID field.

Inspected Fields

Field of View

The target object should be within the specified field of view (degrees).

Origin

The transform that the character should look from.

Pickup Item
The Pickup Item ability will play an animation which picks up the item. This animation could
be picking up the item from the ground or on a table. This ability is a child of the Detect
Object Ability Base so will inherit any properties from it.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.

https://opsive.com/support/documentation/ultimate-character-controller/inverse-kinematics/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/

| 88

Add the Pickup Item ability. This ability should be positioned near the top of the list so2.
another ability will not prevent the character from picking up an item.

Inspected Fields

Slot ID

The slot ID of the item that can be picked up. A value of -1 indicates any slot.

Pickup Item Definitions

Specifies a list of Item Definitions that should be picked up. If the list is empty any Item
Definition will trigger the animation.

Pickup Event

Specifies if the ability should wait for the OnAnimatorPickupItem animation event or wait
the specified amount of time before picking up the item.

Pickup Complete Event

Specifies if the ability should wait for the OnAnimatorPickupComplete animation event or
wait the specified amount of time before stopping the ability.

Ride
The Ride ability works with the Rideable ability to allow an Ultimate Character Controller
character to ride on top of another Ultimate Character Controller character. The classic
example of this is a humanoid character riding a generic horse – they both use the same
underlying locomotion controller but use different Movement Types and abilities to allow
one character to ride on top of another.

To keep the animations synchronized it is important that for any active abilities on the Ride
character the Rideable ability should also have those abilities. For example, if the Speed
Change ability has been added to the Rideable character with a Speed Multiplier of 3 then
the Speed Change ability on the Ride character should also have a Speed Multiplier of 3.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component on the character that you want to be able to ride on
top of another character.
Add the Ride ability. This ability should be positioned near the top of the list so it will2.
override any abilities beneath it.
Select the + button in the ability list under the “Abilities” foldout of the Ultimate3.
Character Locomotion component on the character that you want to be able to be
ridden by another character.
Add the Rideable ability. This ability should be positioned near the bottom of the list so4.
other abilities will be able to control the animator.
Setup the Ability Start Locations on the Rideable character. These start locations are5.

https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/rideable/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/ability-start-location/

| 89

the locations that the ride character can mount onto the rideable character from. The
Ride ability supports start locations on the left and right side of the Rideable
character.
Set the Ride Location on the Rideable ability. This is the object that the Ride character6.
will be move to after mounting.

Inspected Fields

Mount Event

Specifies if the ability should wait for the OnAnimatorMount animation event or wait for the
specified duration before mounting to the rideable object.

Move Speed

The speed at which the character moves towards the ride location.

Rotation Speed

The speed at which the character rotates towards ride location.

Dismount Event

Specifies if the ability should wait for the OnAnimatorDismount animation event or wait for
the specified duration before dismounting from the rideable object.

Reequip Item After Mount

After the character mounts should the ability reequip the item that the character had before
mounting?

Die
The die ability will play a death animation when the character dies. The death animation is
determined by the hit location that causes the character to die. If for example an arrow kills
the player after hitting them in the chest the death animation should play a falling
backwards animation. The die ability includes a forward and backwards death animation but
the ability can easily be extended for other death types.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Die ability. This ability should be positioned near the top of the list so it will2.
override any abilities beneath it.
No extra setup is required – when the character dies the ability will automatically3.
start.

| 90

Adding New Death Animations

There are two steps required in order to new death animations:

The ability needs to detect which animation should be played.1.
The Animator Controller needs to have the new animations added to it.2.

Ability

When adding new functionality we recommend subclassing the abilities so it’s easier to
update when a new version of the Ultimate Character Controller is released. For this
situation you’ll want to subclass the Die ability:

using Opsive.UltimateCharacterController.Character.Abilities;
public class MyDieAbility : Die
{

}

When the ability starts it will call GetDeathTypeIndex to determine the AbilityIntData
Animator parameter value. Your custom die ability should override this method and return a
new value. In this example we will return a value of 3 if the force is greater then 10:

using Opsive.UltimateCharacterController.Character.Abilities;

public class MyDieAbility : Die
{
 /// <summary>
 /// Returns the value that the AbilityIntData parameter should be
set to.
 /// </summary>
 /// <param name="position">The position of the force.</param>
 /// <param name="force">The amount of force which killed the
character.</param>
 /// <param name="attacker">The GameObject that killed the
character.</param>
 /// <returns>The value that the AbilityIntData parameter should be
set to.</returns>
 protected override int GetDeathTypeIndex(Vector3 position, Vector3
force, GameObject attacker)
 {
 if (force.magnitude > 10) {
 return 3;
 }
 return base.GetDeathTypeIndex();
 }
}

| 91

Animator

Now that the custom ability has been created it is time to modify the Animator Controller so
the death animation with a type of 3 can play. This can be done by creating a new state
within the Full Body Layer -> Die substate and transitioning to it when the AbilityIntData
parameter value is equal to 3:

Inspected Fields

Camera Rotational Force

The amount of force to add to the camera when the character dies. This value will be
multiplied by the magnitude of the force that killed the character.

Fall
The fall ability will activate when the character is falling in the air. This includes after the
jump ability is complete or the character is shot into the air from a moving platform.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Fall ability. The Fall ability should be placed directly under the Jump ability2.
within the ability list.
No extra setup is required – the Fall ability will automatically start when in the air and3.
the jump ability isn’t active.

Inspected Fields

Min Fall Height

The minimum height between the ground and the character that the ability can start. Set to
0 to start at any height.

Land Surface Impact

A reference to the Surface impact that should trigger when the character hits the ground.

https://unity3d.com/learn/tutorials/topics/animation/animator-controller?playlist=17099

| 92

This impact is only triggered if the vertical velocity is less then the Min Surface Impact
Velocity.

Min Surface Impact Velocity

The minimum velocity required for the Surface Impact to play.

Land Event

Specifies if the ability should wait for the OnAnimatorFallComplete animation event or wait
the specified amount of time before ending the fall. If you’d like the Fall ability to end
immediately after landing instead of playing a fall end animation the Wait for Animation
Event toggle should be deselected and the Duration should be 0.

First Person Lean
Note: This ability is only available with the first person perspective.

The Lean ability will rotate the first person camera to mimic the character leaning left or
right. This ability does not change the actual rotation of the character. This allows the
character to peak around a corner without exposing their body. The ability can use a
collider to prevent the camera from intersecting with other objects as it leans.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the First Person Lean ability2.
A Capsule Collider will automatically be added under the Character/Colliders Game3.
Object. This Capsule Collider should be adjusted to account for the amount of collision
detection that the ability does. When another object enters this collider the Lean
ability will reduce the amount that it leans.

Inspected Fields

Distance

The distance that the camera should lean.

Tilt

The amount of tilt to apply while leaning (in degrees).

Item Tilt Multiplier

A tilt multiplier applied to the items.

Collider

An optional collider that can be used for collision detection and hit points.

| 93

Collider Offset Multiplier

Optionally modify the distance that the collider leans.

Max Collision Count

The maximum number of collisions that can be detected by the collider.

Follow Pseduo3D (2.5D) Path
Note: This ability is only available with the third person perspective.

The Follow 2.5D Path ability will ensure the 2.5D character is bound to the path specified
within the 2.5D Movement Type. When the Movement Type determines the character
rotation using the path object it will get the rotation at the current character position.
Because the path may curve between the current location and the destination position the
character’s position needs to be modified to ensure it stays in the same relative position
along the path.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Follow Pseudo3D Path ability. This ability runs concurrently so it can be2.
positioned anywhere within the ability list but it is recommended that this ability be
placed at the bottom.

Generic
The Generic ability is an extremely versatile ability that allows you to add any animation
without scripting a new ability. The ability will end after a specified duration or the
OnAnimatorGenericAbilityComplete event is sent.

Setup

Decide on the animations that you want to use. For this example we are going to1.
import the Adventure – Sample Game asset and use the PutGlassesOn animation.
Add the animation to the Animator Controller. Create a new substate within the Full2.
Body Layer called Generic and then create a new state that uses the
PlayerPutGlassesOn motion.
Setup the transitions to your new state. By default the Generic ability uses an3.
AbilityIndex of 10000 so it doesn’t get in the way of other abilities. For this example
we are going to use an AbilityIndex value of 10100.

https://opsive.com/support/documentation/ultimate-character-controller/character/movement-types/included-movement-types/third-person-pseudo3d-2-5d/
https://assetstore.unity.com/packages/essentials/tutorial-projects/adventure-sample-game-76216?aid=1100lGdc

| 94

Select the + button in the ability list under the “Abilities” foldout of the Ultimate4.
Character Locomotion component.
Add the Generic ability.5.
Set the AbilityIndex value to the same value that was set for the transition. This value6.
should be set to 10100 in this example.
Decide if the ability should end based upon an animation event or a timer. An7.
animation event is more accurate so we will use this method.

Decide when the ability should play. By default the ability will start when the action8.
button is pressed.

Inspected Fields

Stop Event

Specifies if the ability should stop when the OnAnimatorGenericAbilityComplete event is
received or wait the specified amount of time before ending the ability.

Height Change
The Height Change ability allows the character to toggle between height changes. This
ability will most commonly be used for crouching but can be used for other stances such as
crawling. When the ability activates it will set the Height Animator parameter. A Height
value of 0 indicates that the ability is not active. This parameter can persist when other
abilities are active so those abilities know that the character is in a height change stance
(this will for example allow the jump animation to start from a crouched state rather than
standing up).

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Height Change ability. We recommend placing this ability near the bottom of2.
the list so it doesn’t override any other more important abilities.

https://opsive.com/support/documentation/ultimate-character-controller/animation/animation-event-trigger/

| 95

Inspected Fields

Concurrent Ability

Is the ability a concurrent ability? Concurrent abilities can stay activated while other
abilities are activated.

Height

Specifies the value to set the Height Animator parameter value to.

Capsule Collider Height Adjustment

The amount to adjust the height of the CapsuleCollider by when active. This is only used if
the character does not have an Animator.

Allow Speed Change

Can the SpeedChange ability run while the HeightChange ability is active?

Idle
The idle ability will play a random animation based off of the AbilityFloatData Animator
parameter. A delay can be set so unique idle animations will only play after a specified
amount of time.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Idle ability. This ability should be placed at the bottom of the list so it won’t2.
take priority over any other ability.
Ensure the Animator uses the AbilityFloatData while the character is in the idle state.3.
The demo Animator Controller contains 3 idle animations within the Base Layer -> Idle
-> Idle Blend Tree.

Set the Max Ability Float Data Value to the number of idle animations that your4.
Animator contains.

Inspected Fields

| 96

Start Delay

Specifies how long the ability should wait until it is started. This prevents a random idle
ability from starting immediately unless it should.

Max Ability Float Data Value

The maximum AbilityFloatData Animator parameter. This number will match the number of
idle animations that the Animator Controller contains.

Random Value

Should a random int between 0 and Max Ability Float Data Value be used? If false the
AbilityFloatData will be increased sequentially.

Min/Max Duration

The minimum and maximum amount of time that the current AbilityFloatData value should
be set until the ability chooses a new value.

Rotate Towards
Rotates the character towards the target. If the character is using root motion then the
speed is determined by the animator. If the character is not using root motion then the
speed is determined by the Ultimate Character Locomotion’s Motor Rotation Speed field.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Rotate Towards ability. This ability should be positioned near the top of the2.
ability list.

Inspected Fields

Target

The object that the character should rotate towards.

Item Equip Verifier
The Item Equip Verifier ability will ensure the character only has the necessary items
equipped according to the starting abilities AllowEquippedSlotsMask. As an example the
Interact ability will first unequip all items so the character can interact with the object.
When the Interact ability is complete the Item Equip Verifier ability will then start again to
equip the original items. This ability will be started manually by the controller and should
not be triggered by the user.

| 97

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Item Equip Verifier ability. The ability will be able to start no matter what2.
position it is in within the ability list.

Jump
The jump ability adds a force to the character in the vertical direction. The jump ability is
only active when the character has a positive vertical velocity – when the character has a
negative vertical velocity the fall ability will activate. The ability has the option of
continuously adding forces for as long as the jump button is held down. It also allows the
character to perform a double (or triple, or quadruple) jump by adding a vertical force each
time the jump button is pressed and the ability is active.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Jump ability. This ability should be located above the fall ability.2.
No extra setup is required – when the Jump button is pressed the jump ability will3.
start.

Inspected Fields

Require Grounded

Does the character need to be on the ground in order to jump?

Min Ceiling Jump Height

Prevents the jump ability from starting if there is an object above the character within the
specified distance. Set to -1 to disable.

Grounded Grace Period

The amount of time after the character is airborne that the character can still jump. Also
known as coyote time. Set to -1 to allow for the character to jump at any time after being
airborne.

Prevent Slope Limit Jump

Should the jump be prevented when the character is on a slope greater than the slope limit?

Force

The amount of force that should be applied when the character jumps. This force is added
only once when the ability starts. Set to -1 to allow for the character to jump at any time
after being airborne.

| 98

Sideways Force Multiplier

A multiplier applied to the force while moving sideways. This multiplier is only applied to
the initial jump force.

Backwards Force Multiplier

A multiplier applied to the force while moving backwards. This multiplier is only applied to
the initial jump force.

Frames

The number of frames that the force is applied in. The larger the value the less of an
immediate effect there will be on the initial jump force.

Force Damping

Determines how quickly the jump force wears off.

Jump Event

Specifies if the ability should wait for the OnAnimatorStartJump animation event or wait the
specified amount of time before starting to jump. If you’d like the Jump ability apply a force
immediately without playing a starting jump animation then the Wait for Animation Event
toggle should be deselected and the Duration should be 0.

Jump Surface Impact

The Surface Impact triggered when the character jumps.

Force Hold

The amount of force to add per frame if the jump button is being held down continuously.
This is a common feature for providing increased jump control in platform games.

Force Damping Hold

Determines how quickly the jump hold force wears off.

Max Repeated Jump Count

Specifies the number of times the character can perform a repeated jump (double jump,
triple jump, etc). Set to -1 to allow an infinite number of repeated jumps.

Repeated Jump Force

The amount of force applied when the character performs a repeated jump.

Repeated Jump Frames

The number of frames that the repeated jump force is applied in. The larger the value the

| 99

less of an immediate effect there will be on the initial jump force.

Upward Velocity Stop Threshold

A vertical velocity value below the specified amount will stop the ability.

Recurrence Delay

The number of seconds that the jump ability has to wait after it can start again (includes
repeated jumps).

Move Towards
The Move Towards ability will move the character to a specified location. This is most useful
in situations where the character must be in a precise location before another ability can
start. As an example the Interact ability may require the ability to be positioned in front of a
door before that door can be opened, or a Climb ability may require the character to be
positioned in front of the ladder before the character can mount on that ladder.

If a pathfinding ability, such as the NavMeshAgent Movement ability, has been added then
the Move Towards ability will use pathfinding to move towards the location.

The Move Towards ability works with the Move Towards Location component in order to
determine the location that the character should move towards.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Move Towards ability. The ability will be able to start no matter what position2.
it is in within the ability list.
On the Ultimate Character Locomotion component create a state which sets the Motor3.
Rotation Speed to a larger value. In the demo scene the Motor Rotation Speed is set to
100.

API

The Move Towards ability can be started through script with the MoveTowardsLocation
method. MoveTowardsLocation takes a Vector3 position and will move the character to that
destination.

using UnityEngine;
using Opsive.UltimateCharacterController.Character;
using Opsive.UltimateCharacterController.Character.Abilities;

public class MyObject : MonoBehaviour
{
 [Tooltip("The character that should move towards the
destination.")]
 [SerializeField] protected GameObject m_Character;

https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/navmeshagent-movement/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/move-towards-location/
https://opsive.com/support/documentation/ultimate-character-controller/state-system/

| 100

 [Tooltip("The destination that the character should move
towards.")]
 [SerializeField] protected Vector3 m_Destination;

 /// <summary>
 /// Starts moving to the destination.
 /// </summary>
 private void Start()
 {
 var characterLocomotion =
m_Character.GetComponent<UltimateCharacterLocomotion>();
characterLocomotion.MoveTowardsAbility.MoveTowardsLocation(m_Destinati
on);
 }
}

Inspected Fields

Input Multiplier

The multiplier to apply to the input vector. Allows the character to move towards the
destination faster.

Inactive Timeout

The amount of time it takes that the character has to be stuck before teleporting the
character to the start location.

Move Target Distance Timeout

Specifies the maximum distance that the target position can move before the ability stops.

Teleport on Early Stop

Should the character be teleported after the timeout or max moving distance has elapsed? If
false the character will stop.

Disable Gameplay Input

Should the OnEnableGameplayInpt event be sent to disable the input when the ability is
active?

Independent Move Towards Location

The location that the Move Towards ability should move towards if the ability is not started
by another ability.

| 101

Move With Object
The Ultimate Character Locomotion component can run in the Update or Fixed Update loop.
If the character is running within Fixed Update the Kinematic Object Manager ensures the
character (and other kinematic objects) move at a smooth rate while updating at a fixed
timestep. If you want to have your object moved by the Kinematic Object Manager you can
implement the IKinematicObject interface but this isn’t always possible, especially when
integrating the controller with other assets. The Move With Object ability will allow your
character to move with the target object even if that target object is updated outside of the
Kinematic Object Manager loop. The target object must be updated within the Fixed Update
loop otherwise there will be noticeable jitter. This does not apply if your character is
updating within Update.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Move With Object ability. The ability will be able to start no matter what2.
position it is in within the ability list.
Ensure the object that the character should follow updates within the FixedUpdate3.
loop. In the demo scene the SimplePlatform component is an example of a object that
can move the character while executing outside of the Kinematic Object Manager loop.
Add the Kinematic Object component to the object that the character should follow. In4.
the demo this is the same object that the SimplePlatform component was added to.
Ensure the script that updates within FixedUpdate executes before the Kinematic5.
Object component. In most cases nothing needs to be changed but if the script updates
after the Kinematic Object component then there will be jitter. This can be set in the
Script Execution Order window.

The Move With Object ability will start when it has a Target field, and it will stop when6.
the Target field is set to null. For example, the SimplePlatform component in the demo
project sets the Target field of the Move With Object ability when a character enters
its trigger collider.
To do this in code, you need to first get a reference to the Move With Object ability –7.
for this, you can use UltimateCharacterLocomotion.GetAbility (as described under the
“API” section on this page), then set the ability’s Target to the transform of the object
that the character should move with.

Inspected Fields

Target

The object that the character should move with.

https://docs.unity3d.com/Manual/class-MonoManager.html
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/

| 102

NavMeshAgent Movement
The NavMeshAgentMovement ability will move the character along a Unity NavMesh. This
ability will read the velocity from the NavMeshAgent and translate that into inputs that the
Ultimate Character Controller can understand. This ability should be positioned higher than
the Speed Change ability within the ability list.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the NavMeshAgent Movement ability. The NavMeshAgent component will2.
automatically be added if it has not been already.
Ensure the ability is positioned above the Speed Change ability. This will allow the3.
Speed Change to change the NavMeshAgent’s speed.
Ensure your scene has an active navigation mesh.4.

Speed

If you use root motion and adjust the speed on the NavMeshAgent component you’ll find
that the speed parameter doesn’t change the character’s speed. This is because the
animation is controlling the character’s speed rather than the NavMeshAgent. In order to
change the speed of the character you should use the Speed Change ability which will then
allow the correct animation to play based on the desired speed.

Set Destination

The NavMeshAgentMovement ability contains a SetDestination parameter which you can
use to move the character using the NavMeshAgent.

using UnityEngine;
using Opsive.UltimateCharacterController.Character;
using Opsive.UltimateCharacterController.Character.Abilities;

public class MyObject : MonoBehaviour
{
 [Tooltip("The character that should start and stop the jump
ability.")]
 [SerializeField] protected GameObject m_Character;
 [Tooltip("The NavMeshAgent destination.")]
 [SerializeField] protected Vector3 m_Destination;

 /// <summary>
 /// Sets the NavMeshAgentMovement destination.
 /// </summary>
 private void Start()
 {
 var characterLocomotion =
m_Character.GetComponent<UltimateCharacterLocomotion>();

https://docs.unity3d.com/Manual/nav-NavigationSystem.html
https://docs.unity3d.com/Manual/nav-BuildingNavMesh.html
https://docs.unity3d.com/Manual/RootMotion.html
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/speed-change/

| 103

 var navMeshAgentMovement =
characterLocomotion.GetAbility<NavMeshAgentMovement >();
 navMeshAgentMovement.SetDestination(m_Destination);
 }
}

Inspected Fields

Rotation Override

Specifies if the rotation should be overridden:

No Override: Does not override the rotation. Uses the NavMesh updateRotation
property.
NavMesh: Forces the rotation according to the NavMesh path.
Character: Forces the rotation according to the character’s rotation.

Arrived Distance

The agent has arrived at the destination when the remaining distance is less than the
arrived distance.

Manual Off Mesh Link Name

The name of the manual offmesh link that the character can traverse across.

Jump Across Manual Off Mesh Link

Should the jump ability be started on the manual offmesh link?

Quick Start
The Quick Start ability allows the character to play a starting animation when the character
initially starts to move. This ability will monitor the character’s input values and will
automatically activate when the character starts to move.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Quick Start ability. This ability should be positioned towards the bottom of the2.
ability list so it does not prevent any other ability from starting.

Inspector Fields

Max Input Count

The number of inputs to store when determining if the ability can start. The smaller the
value the less sensitive the ability is when determining if it should start.

| 104

Speed Change Threshold

The input value which differentiates between a walk and a run. When the ability starts it will
use this value to determine if a starting walk or run animation should be played.

Quick Stop
The Quick Stop ability allows the character to play a sudden stop animation. This ability will
monitor the character’s input values and will automatically activate when the character
stops.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Quick Stop ability. This ability should be positioned towards the bottom of the2.
ability list so it does not prevent any other ability from starting.

Inspector Fields

Max Input Count

The number of inputs to store when determining if the ability can start. The smaller the
value the less sensitive the ability is when determining if it should start.

Speed Change Threshold

The input value which differentiates between a walk and a run. When the ability starts it will
use this value to determine if a walk or run stopping animation should be played.

Stop Threshold

The threshold that indicates when the character has stopped. The ability will start sooner
with a larger value.

Required Start Success Count

The number of times CanStartAbility must return true before the ability actually starts. This
will prevent the ability from starting too soon to ensure the character is actually starting
versus just doing a Quick Turn.

Quick Turn
The Quick Turn ability allows the character to play an explicit animation when the character
turns. This turn must be a 180 degree turn – the ability does not activate when taking 90
degree turns. This ability will monitor the character’s input values and will automatically
activate when the character should perform a 180 degree turn. This ability should be used
with the Adventure view type.

https://opsive.com/support/documentation/ultimate-character-controller/camera/view-types/included-view-types/third-person/adventure/

| 105

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Quick Turn ability. This ability should be positioned towards the bottom of the2.
ability list so it does not prevent any other ability from starting.

Inspected Fields

Max Input Count

The number of inputs to store when determining if the ability can start. The smaller the
value the less sensitive the ability is when determining if it should start.

Min Input Sqr Magnitude

The minimum value of the input vector required for the ability to start. Note that this is the
squared value of the input for better performance.

Speed Change Threshold

The input value which differentiates between a walk and a run. When the ability starts it will
use this value to determine if a starting walk or run animation should be played.

Ragdoll
The ragdoll ability will enable or disable a ragdoll created with the Unity Ragdoll Wizard.
The ability can automatically start when the character dies or can be started by the
environment/player.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Ragdoll ability. This ability should be placed near the top of the ability list so it2.
will take priority over the abilities beneath it.
If you have not already created the ragdoll through the Ragdoll Wizard then select the3.
Add Ragdoll Colliders button under the Editor foldout. Create the ragdoll using that
wizard.
Ensure the Start/Stop Type values are correct and the Start On Death field is the4.
correct value.

Inspected Fields

Start On Death

Should the ability start when the character dies?

https://docs.unity3d.com/Manual/wizard-RagdollWizard.html

| 106

Start Delay

Specifies the delay after the ability starts that the character should turn into a ragdoll.

Ragdoll Layer

The layer that the colliders should switch to when the ragdoll is active.

Inactive Ragdoll Layer

The layer that the colliders should switch to when the ragdoll is inactive.

Camera Rotational Force

The amount of force to add to the camera when the ability starts This value will be
multiplied by the magnitude of the force that killed the character if the ability starts when
the character died.

Restrict Position
The restrict position ability will restrict the character to a specified bounds. When the
character hits the edge of that bounds they will stop similar to if they hit a wall.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Restrict Position ability. This ability can run concurrently with other abilities2.
so the location within the list does not matter.
Select the type of restriction that you’d like to apply. The min/max position fields can3.
then be adjusted based upon this restriction type.

Inspected Fields

Restriction

Specifies how to restrict the character’s position:

RestrictX: Restricts the local X position.
RestrictZ: Restricts the local Z position.
RestrictXZ: Restricts the local X and Z position.

Min/Max X Position

Specifies the minimum and maximum local X position that the character can move to if
restricting the X position.

Min/Max Z Position

Specifies the minimum and maximum local Y position that the character can move to if

| 107

restricting the Y position.

Restrict Rotation
The restrict rotation ability will restrict the character to the specified rotation.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Restrict Rotation ability. This ability can run concurrently with other abilities2.
so the location within the list does not matter.
Input the angle of restriction that you’d like to apply to the character.3.

Inspected Fields

Restriction

The number of degrees that the character can rotation between. This restriction is applied
to the local up axis. If for example you’d only like the character to move forward, left, right,
or backwards in a grid pattern then this value should be set to 90. A value of 180 will allow
the character to only rotate in the forward and backwards direction.

Offset

Any offset that should be applied to the local y rotation. This doesn’t add or remove any
restriction but it does allow the character to orient towards a different starting direction.

Relative Look Source Rotation

Should the local y rotation of the look source be applied to the rotation?

Look Source Offset

Any offset that should be applied to the look source y rotation.

Revive
The Revive ability will play a getting back up animation transitioning from the character
laying on the ground. The ability can start when the character dies or be triggered by the
player/environment. If the ability starts when the character dies then a delay is used which
will prevent the ability from playing until the timer has elapsed. The revive ability includes a
forward and backwards revive animation but the ability can easily be extended for other
revive types.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.

| 108

Add the Revive ability. This ability should be positioned near the top of the list so it2.
will override any abilities beneath it.
Determine if the ability should start when the character dies. This is enabled by3.
default with the Start On Death toggle.

Adding New Revive Animations

There are two steps required in order to add new revive animations:

The ability needs to detect which animation should be played.1.
The Animator Controller needs to have the new animations added to it.2.

Ability

When adding new functionality we recommend subclassing the abilities so it’s easier to
update when a new version of the Ultimate Character Controller is released. For this
situation you’ll want to subclass the Revive ability:

using Opsive.UltimateCharacterController.Character.Abilities;
public class MyReviveAbility : Revive
{

}

When the ability starts it will call GetReviveTypeIndex to determine the AbilityIntData
Animator parameter value. Your custom revive ability should override this method and
return a new value. In this example we will return a value of 3 if the attacker has the tag
Human.

Opsive.UltimateCharacterController.Character.Abilities;

public class MyReviveAbility : Revive
{
 /// <summary>
 /// Returns the value that the AbilityIntData parameter should be
set to.
 /// </summary>
 /// <param name="position">The position of the force.</param>
 /// <param name="force">The amount of force which killed the
character.</param>
 /// <param name="attacker">The GameObject that killed the
character.</param>
 /// <returns>The value that the AbilityIntData parameter should be
set to.</returns>
 protected override int GetReviveTypeIndex(Vector3 position,
Vector3 force, GameObject attacker)
 {
 if (string.Compare(attacker.tag, "Human") == 0) {
 return 3;
 }

| 109

 return base.GetReviveTypeIndex();
 }
}

Animator

Now that the custom ability has been created it’s time to modify the Animator Controller so
the revive animation with a type of 3 can play. This can be done by creating a new state
within the Full Body Layer -> Revive substate and transitioning to it when the AbilityIntData
parameter value is equal to 3:

Inspected Fields

Start On Death

Should the ability start when the character dies?

Death Start Delay

Specifies the number of seconds after the character dies that the ability should start.

Rideable
The Rideable ability works with the Ride ability to allow another Ultimate Character
Controller ride on top of it. The classic example of this is a humanoid character riding a
generic horse – they both use the same underlying locomotion controller but use different
Movement Types and abilities to allow one character to ride on top of another.

To keep the animations synchronized it is important that for any active abilities on the Ride
character the Rideable ability should also have those abilities. For example, if the Speed
Change ability has been added to the Rideable character with a Speed Multiplier of 3 then
the Speed Change ability on the Ride character should also have a Speed Multiplier of 3.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component on the character that you want to be able to ride on
top of another character.

https://unity3d.com/learn/tutorials/topics/animation/animator-controller?playlist=17099
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/ride/

| 110

Add the Ride ability. This ability should be positioned near the top of the list so it will2.
override any abilities beneath it.
Select the + button in the ability list under the “Abilities” foldout of the Ultimate3.
Character Locomotion component on the character that you want to be able to be
ridden by another character.
Add the Rideable ability. This ability should be positioned near the bottom of the list so4.
other abilities will be able to control the animator.
Setup the Ability Start Locations on the Rideable character. These start locations are5.
the locations that the ride character can mount onto the rideable character from. The
Ride ability supports start locations on the left and right side of the Rideable
character.
Set the Ride Location on the Rideable ability. This is the object that the Ride character6.
will be move to after mounting.

Inspected Fields

Ride Location

The Transform that the character should be located to after mounting on the object.

Left Dismount Collider

The collider area that should be checked to determine if the character can dismount on the
left side.

Right Dismount Collider

The collider area that should be checked to determine if the character can dismount on the
right side.

Stop Movement Animation
The Stop Movement Animation ability prevents the movement animation from playing when
the character would run into a solid object. The move direction is predicted if the character
is using root motion because with root motion the movement is applied after the animation
plays.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Stop Movement Animation ability. This ability should be positioned towards2.
the bottom of the ability list so it can override the input values.

Inspector Fields

Collision Check Distance

The distance that is checked to determine if there is a collision.

https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/ability-start-location/

| 111

Wall Glide Curve Threshold

The maximum Character Locomotion Wall Glide Curve value that the ability should start
with. The higher the threshold to more the ability will ignore the Wall Glide Curve value.

Slide
The Slide ability will apply a force to the character if the character is on a steep slope. If the
slide ability is not added to the character then the character will not slide off of slopes that
are too steep for the character to slide on. This ability does not affect the animations.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Slide ability. This ability can run concurrently with other abilities so the2.
location within the list does not matter.

Inspected Fields

Min/Max Slide Limit

The minimum and maximum steepness (in degrees) that the character can slide.

Multiplier

Multiplier of the ground’s slide value. The slide value is determined by (1 – Dynamic
Friction) of the ground’s physic material.

Max Slide Speed

The maximum speed that the character can slide.

Override Up Direction

Optionally specifies the up direction that should override the character’s up direction.

Speed Change
The Speed Change ability allows the character to change speeds. This ability will most
commonly be used for running but can be used for other speeds such as sneaking. When the
ability activates it will set the Speed Animator parameter. A Speed value of 0 indicates that
the ability is not active. This parameter can persist when other abilities are active so those
abilities know that the character has a different speed.

When the character uses root motion the Speed Change ability doesn’t actually change the
character’s speed – it is still up to the animation to change the character’s speed. When the
Speed Change ability is active it will multiply the Horizontal and Forward Movement
Animator parameters which will then allow the Animator to know that it should play an

https://docs.unity3d.com/Manual/RootMotion.html

| 112

animation that has a different speed. For an example take a look at the Movement blend
tree within the Base Layer -> Movement substate. Notice for any of the running animations
it blends based on a value of 2:

With this setup when the Horizontal or Forward Movement parameter has a value of -2 or 2
then the character will play the running animation. This can also be used in reverse – if
you’d like the character to sneak then the Speed Change Multiplier should be set to 0.5 so a
sneaking animation can be added to the blend tree when the Horizontal or Forward
Movement parameters have a value of 0.5.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Speed Change ability. It doesn’t matter where this ability is placed within the2.

| 113

list because it is a concurrent ability.

Inspected Fields

Speed Change Multiplier

The speed multiplier when the ability is active. This value will affect the Character
Locomotion’s Input Vector value.

Min/Max Speed Change Value

The minimum and maximum value that the SpeedChangeMultiplier can change the
InputVector value to.

Speed Parameter

Specifies the value to set the Speed Animator parameter to.

Require Movement

Does the ability require movement in order to stay active?

Target Orbit
The Target Orbit ability will orbit around the target when the character moves. The ability
does not move the character, rather it ensures the character is correctly rotating around the
target in a constant direction. This ability can be used with the camera’s Aim Assist
component.

Setup

Select the + button in the ability list under the “Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Target Orbit ability. This ability should be positioned towards the bottom of2.
the ability list so it gets updated last.

Inspector Fields

Use Aim Assist Target

Should the ability use the aim assist target?

Target

Specifies the target transform if the aim assist target is not used.

Item Abilities
Item Abilities are a special type of Ability which allow for interaction with the Items that the

https://opsive.com/support/documentation/ultimate-character-controller/camera/aim-assist/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/
https://opsive.com/support/documentation/ultimate-character-controller/items/

| 114

character has. While the Item Ability is a subclass of the Ability class it has some special
properties to it:

Item abilities are added to a separate list compared to standard abilities within the
Ultimate Character Locomotion.
By default, multiple item abilities can be active at the same time. This allows the Aim
item ability to still be active while the Use item ability is active.
Item abilities do not use a priority system to determine which abilities can be active.
They do use the priority system when determining which ability should set the
animator parameter.

Item abilities have no restrictions in what they can or cannot do – for example they can still
control the character’s rotation if required. New item abilities can be created with similar
steps as the New Ability topic.

Inspected Fields

Item State Index

Specifies the index of the Item State parameter within the Animator. A value of -1 indicates
that the parameter is not used for this ability.

Events

When the ability starts or stops the “OnCharacterItemAbilityActive” event will be sent from
the built-in Event System. A corresponding Unity event will also be sent. The following
example will subscribe to this event from a new component:

using UnityEngine;
using Opsive.Shared.Events;
using Opsive.UltimateCharacterController.Character.Abilities.Items;

public class MyObject : MonoBehaviour
{
 /// <summary>
 /// Initialize the default values.
 /// </summary>
 public void Awake()
 {
 EventHandler.RegisterEvent<ItemAbility, bool>(gameObject,
"OnCharacterItemAbilityActive", OnItemAbilityActive);
 }

 /// <summary>
 /// The specified item ability has started or stopped.
 /// </summary>
 /// <param name="itemAbility">The item ability that has been
started or stopped.</param>
 /// <param name="activated">Was the ability activated?</param>
 /// </summary>

https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/new-ability/
https://opsive.com/support/documentation/ultimate-character-controller/programming-concepts/events/
https://unity3d.com/learn/tutorials/topics/scripting/events

| 115

 private void OnItemAbilityActive(ItemAbility itemAbility, bool
activated)
 {
 Debug.Log(itemAbility + " activated: " + activated);
 }

 /// <summary>
 /// The GameObject has been destroyed.
 /// </summary>
 public void OnDestroy()
 {
 EventHandler.UnregisterEvent<ItemAbility, bool>(gameObject,
"OnCharacterItemAbilityActive", OnItemAbilityActive);
 }
}

Aim
The Aim item ability will place the character in an aiming state. Generally while the
character is in a first person perspective you don’t have to press a button in order to aim so
the ability can automatically activate while in a first person perspective.

Always Aim

If you’d like your character to always aim set the Start Type to Automatic and the Stop Type
to Manual. This will keep the Aim ability active all of the time.

Events

When the item ability starts aiming it will send the “OnAimAbilityStart” event using the
built-in Event System. This event has two parameters: the first indicates if the ability
started, and the second indicates if the ability is being started from input. The input start
parameter will be false when the ability is automatically starting while in a first person
perspective. You can register and use this event with:

using UnityEngine;
using Opsive.Shared.Events;

public class MyObject : MonoBehaviour
{
 public void Awake()
 {
 EventHandler.RegisterEvent<bool, bool>(gameObject,
"OnAimAbilityStart", OnAim);
 }

 /// <summary>
 /// The Aim ability has started or stopped.
 /// </summary>

https://opsive.com/support/documentation/ultimate-character-controller/programming-concepts/events/

| 116

 /// <param name="start">Has the Aim ability started?</param>
 /// <param name="inputStart">Was the ability started from
input?</param>
 private void OnAim(bool aim, bool inputStart)
 {
 // Ignore the event if the aim ability wasn't explicitly
started.
 if (!inputStart) {
 return;
 }
 Debug.Log("Aim ability start: " aim};
 }

 /// <summary>
 /// The GameObject has been destroyed.
 /// </summary>
 public void OnDestroy()
 {
 EventHandler.UnregisterEvent<bool, bool>(gameObject,
"OnAimAbilityStart", OnAim);
 }
}

Inspected Fields

Stop Speed Change

When the Aim ability is activated should it stop the speed change ability?

Activate In First Person

Should the ability activate when the first person perspective is enabled?

Rotate Towards Look Source Target

Should the ability rotate the character to face the look source target?

Block
The Block ability will play a blocking animation when another object comes into contact with
the Shield Item Action. When the ability starts it will play a block or a parry animation based
on the type of item that was hit. If the hit item has the Melee Weapon added to it then a
parry animation will play, otherwise a blocking animation will play.

A unique block/parry animation can play based on the animation that the opponent
character is playing. The blocking animation may be different if the opponent is slashing
down with a sword versus slashing to the side with a katana. When the Block ability starts
the animator’s Item Substate Index will contain a unique ID which indicates which block
animation should be played. This ID is up to a nine digit number that has the following

https://opsive.com/support/documentation/ultimate-character-controller/items/actions/shield/
https://opsive.com/support/documentation/ultimate-character-controller/items/actions/usable/melee-weapon/
https://opsive.com/support/documentation/ultimate-character-controller/animation/animator/animation-animator-structure/

| 117

format:

AAABBBCCC

AAA: First three digits indicate the Item ID of the melee weapon that the opponent is
attacking with. The ID is an integer so any leading zeros will be truncated.
BBB: Middle three digits indicate the substate index of the use state that the opponent is
running.
CCC: Last three digits indicate the substate index for the current ability. This is retrieved
from the Impact Animator Audio State Set on the Shield.

For an example lets say that the opponent has a sword which has an Item ID of 22. The
opponent’s Use ability is playing an animation with an Item Substate Index of 3. Finally, the
Impact Animator Audio State Set on the shield returns a value of 1. The resulting ID of this
sequence of values will be 22003001.

Inspected Fields

Slot ID

The slot that should be used. -1 will block all of the slots.

Block Item State Index

The Animator’s Item State Index when the character blocks.

Parry Item State Index

The Animator’s Item State Index when the character parries.

Drop
The Drop item ability will drop the currently equipped item. If the item has a drop prefab
setup then that prefab will be instantiated and the item will fall to the ground.

Inspected Fields

Slot ID

The slot that should be dropped. -1 will drop all of the slots.

No Drop Item Definitions

The Item Definitions that cannot be dropped.

Wait For Unequip

Should the item wait to be dropped until it is unequipped?

https://opsive.com/support/documentation/ultimate-character-controller/items/actions/shield/
https://opsive.com/support/documentation/ultimate-character-controller/animation/animator/default-animator-values/

| 118

Drop Event

Specifies if the item should be dropped when the OnAnimatorDropItem event is received or
wait the specified amount of time before dropping the item.

Item Set
The Item Set item ability is an abstract ability base class for common Item Set operations.
These operations include equip and unequip operations such as switching to the next item
or toggling the equip state of an item.

Inspected Fields

Item Set Category ID

The category that the ability should respond to. By specifying a category ID it allows
multiple Item Set abilities to be added each affecting only a single Item Set category. This
for example allows you to switch primary weapons with one button mapping and then switch
grenade types with another button mapping.

Prevent Start Use Reload Active

If the Use or Reload abilities are active should the ability not be able to start?

Equip Next
The Equip Next item ability will equip the next available Item Set within the specified
category. If the current Item Set category is at index 1 and the Equip Next ability starts it’ll
then try to equip the Item Set at category index 2. If this index cannot be equipped (such as
if the inventory doesn’t contain the item) then it’ll try index 3. The ability will try every
index in linear order until it finds a valid Item Set or reaches the starting index again. The
Equip Next ability doesn’t actually do the equip or unequip – it instead relies on the Equip
Unequip ability to do the actual work.

Equip Previous
The Equip Previous item ability will equip the previous available Item Set within the
specified category. If the current Item Set category is at index 3 and the Equip Previous
ability starts it’ll then try to equip the Item Set at category index 2. If this index cannot be
equipped (such as if the inventory doesn’t contain the item) then it’ll try index 1. The ability
will try every index in linear order until it finds a valid Item Set or reaches the starting
index again. The Equip Previous ability doesn’t actually do the equip or unequip – it instead
relies on the Equip Unequip ability to do the actual work.

https://opsive.com/support/documentation/ultimate-character-controller/inventory/item-sets/
https://opsive.com/support/documentation/ultimate-character-controller/inventory/item-sets/
https://opsive.com/support/documentation/ultimate-character-controller/character/item-abilities/item-set/equip-unequip/
https://opsive.com/support/documentation/ultimate-character-controller/character/item-abilities/item-set/equip-unequip/
https://opsive.com/support/documentation/ultimate-character-controller/inventory/item-sets/
https://opsive.com/support/documentation/ultimate-character-controller/character/item-abilities/item-set/equip-unequip/

| 119

Equip Scroll
The Equip Scroll item ability will switch through the available Item Sets within the specified
category. This ability is generally used with a mouse scrollwheel so when the wheel is
scrolled forward the next item set equips, and when scrolled backward the previous item set
equips. The Equip Scroll ability doesn’t actually do the equip or unequip – it instead relies
on the Equip Unequip ability to do the actual work.

Inspected Fields

Scroll Sensitivity

The sensitivity for switching between items. The higher the value the faster the scroll wheel
has to scroll in order to switch items.

Equip Unequip
The Equip Unequip item ability is responsible for actually doing the item equip or unequip.
When any other equip item ability are activated the actual equip/unequip is done by the
Equip Unequip ability. Instead of equipping or unequipping a specific slot the ability instead
works by Item Set. By working with ItemSets it ensures the wrong combination of weapons
aren’t equipped. The ability can be started manually by calling the
StartEquipUnequip(ItemSetIndex) method.

Equip Troubleshooting

If your item isn’t equipping ensure the following is set:

The Item Set Manager contains a reference to the Item Collection.

The Equip Unequip ability exists and has an Item Set Category set to the same
category as what the Item Definition belongs to.

The Equip Event on the Item component is set correctly. If it is waiting for an
animation event ensure the Animator executes the OnAnimatorItemEquip event. As a
test to ensure this is not the cause you can disable the Wait for Animation Event toggle
so it will instead equip after a set duration.

Similar to above, ensure the Equip Complete Event is set correctly. If Wait for
Animation Event is enabled then the ability will wait for the
OnAnimatorItemEquipComplete event.
The Item Definition is specified within the Default Loadout of the Inventory (this only
applies if you want your item equipped when the character spawns).

https://opsive.com/support/documentation/ultimate-character-controller/inventory/item-sets/
https://opsive.com/support/documentation/ultimate-character-controller/character/item-abilities/item-set/equip-unequip/
https://opsive.com/support/documentation/ultimate-character-controller/inventory/item-sets/
https://opsive.com/support/documentation/ultimate-character-controller/inventory/item-sets/
https://opsive.com/support/documentation/ultimate-character-controller/animation/animation-event-trigger/
https://opsive.com/support/documentation/ultimate-character-controller/inventory/

| 120

The Item Definition that is specified within the Default Loadout matches the Item
Definition specified on your Item component. The Item component is located under the
YourCharacter/Items/YourItem GameObject.

The First/Third Person Perspective Item component specifies a Visible Object. The
First/Third Perspective Item component is located under the
YourCharacter/Items/YourItem GameObject.

API

In order to equip or unequip an item the StartEquipUnequip method can be started. The
item set index parameter is the corresponding index within the Item Set Manager that
should be equipped.

using UnityEngine;
using Opsive.UltimateCharacterController.Character;
using Opsive.UltimateCharacterController.Character.Abilities.Items;

public class MyAIAgent : MonoBehaviour
{
 [Tooltip("A reference to the Ultimate Character Controller
character.")]
 [SerializeField] protected GameObject m_Character;

 /// <summary>
 /// Equips the item.
 /// </summary>
 private void Start ()
 {
 var characterLocomotion =
m_Character.GetComponent<UltimateCharacterLocomotion>();
 if (characterLocomotion != null) {
 // Equip a specific index within the ItemSetManager with
the EquipUnequip ability.
 var equipUnequip =
characterLocomotion.GetAbility<EquipUnequip>();
 if (equipUnequip != null) {
 // Equip the ItemSet at index 2 within the
ItemSetManager.
 equipUnequip.StartEquipUnequip(2);
 }
 }
 }
}

https://opsive.com/support/documentation/ultimate-character-controller/items/
https://opsive.com/support/documentation/ultimate-character-controller/items/perspective/

| 121

Inspected Fields

Auto Equip

Mask which specifies when to auto equip a new item.

Always: Always equip a picked up item.
Unequipped: Equip the item if there are no items equipped.
OutOfUsableItem: Equip the item if the current item has no more usable Item
Definitions left.
NotPreset: Equip the item if the item hasn’t been added to the inventory already.
FirstTime: Equip the item the first time the item has been added.

Equip Item State Index

The Item State Index while equipping. This index will be set within the animator so an equip
animation can play.

Unequip Item State Index

The Item State Index while unequipping. This index will be set within the animator so an
unequip animation can play.

Aim Item Substate Index Addition

The value to add to the Item Substate Index when the character is aiming.

Toggle Equip
The Toggle Equip item ability will equip or unequip the current Item Set. The Toggle Equip
ability works with the Equip Unequip ability to do the actual equip or unequip. While
unequipping the Toggle Equip will equip the default Item Set. If no default Item Set is
specified then no item set will be equipped.

Inspected Fields

Toggle Default Item Set On Start

Should the default Item Set be toggled upon start? This is useful when you’d like to ensure
at least one Item Set is active at all times.

Reload
The Reload item ability will reload the item. There are two parts to a reload:

The first part will take the reload amount from the inventory and add it to the item.
The second part will wait a small amount of time after the first part to ensure the
reload animation is complete before ending the ability.

https://opsive.com/support/documentation/ultimate-character-controller/inventory/item-sets/
https://opsive.com/support/documentation/ultimate-character-controller/character/item-abilities/item-set/equip-unequip/

| 122

Inspected Fields

Slot ID

The slot that should be reloaded. If a value of -1 is specified then the ability will reload all of
the equipped items.

Action ID

The ID of the ItemAction component that can be reloaded.

Third Person Item Pullback
When the third person character is aiming with an object directly in front of them there’s a
chance that the weapon will clip the object.

The Item Pullback ability solves this by preventing the aim and use abilities from activating
when an object would clip the weapon. The ability detects when the item would overlap by
placing a Capsule Collider in front of the player and doing a cast to determine if anything
overlaps with it.

Setup

Select the + button in the ability list under the “Item Abilities” foldout of the Ultimate1.
Character Locomotion component.
Add the Third Person Item Pullback item ability.2.
The ability will automatically add an Item Pullback Collider. This collider is located3.
under the “Character/Colliders” GameObject and should be positioned to be in the

| 123

area that the character should pull back the item in.

Inspected Fields

Collider

The collider used to detect when the character is near an object and should pull back the
items.

Collision Layers

The layers that the collider can collide with.

Max Collision Count

The maximum number of collisions that should be detected by the collider.

Use
The Use item ability will play the use animation for the item (shooting, melee slash, grenade
throw, etc). This ability is setup so multiple Use item abilities can be added to a single
character depending on what type of use the character should perform. As an example an
assault rifle can be fired with the left mouse button, but it can also be used as a blunt object
in a melee attack. This is done by adding two different Use abilities to the character and
specifying a different Action ID.

Inspected Fields

Slot ID

The slot that should be used. If a value of -1 is specified then the ability will use all of the

https://opsive.com/support/documentation/ultimate-character-controller/items/actions/

| 124

equipped items.

Action ID

The ID of the Item Action component that can be used.

Rotate Towards Look Source Target

Should the ability rotate the character to face the look source target?

Block Over UI

Should the use be blocked when the cursor is over a UI object?

In Air Melee Use
The In Air Melee Use ability is a subclass of the Use ability and will allow the character to
perform a melee attack while the character is in the air. The ability requires the character
to have a melee weapon with a Melee Weapon component that plays an attack animation
while the character is in the air.

Setup

Select the + button in the item ability list under the “Item Abilities” foldout of the1.
Ultimate Character Locomotion component.
Add the In Air Melee Use ability.2.
Add a new Melee Weapon component with a unique Action ID that should transition to3.
the correct melee attack animation when the ability is active. As an example the Sword
item has a Melee Weapon component with an Action ID of 2, and under the Use
Animator Audio states it has an Item Substate Index of 10.
Assign the Action ID specified within step 3 to the Action ID field of the In Air Melee4.
Use ability.

Inspected Fields

Upward Force

The amount of force that should be applied at the start of the ability.

Upward Force Frames

The number of frames that the upward force is applied in.

Downward Force

The amount of force that should be applied when the character starts to fall.

Downward Force Frames

The number of frames that the downward force is applied in.

https://opsive.com/support/documentation/ultimate-character-controller/character/item-abilities/use/
https://opsive.com/support/documentation/ultimate-character-controller/items/actions/usable/melee-weapon/

| 125

On Grounded Substate Index

The value of the ItemSubstateIndex parameter when the character has becomes grounded
after performing the use.

Ground Impact

The impact effect that should be played when the character is grounded.

Ground Position Camera Recoil

The amount of positional force to add to the camera when the character is grounded.

Ground Rotation Camera Recoil

The amount of rotational recoil to add to the camera when the character is grounded.

Melee Counter Attack
The Melee Counter Attack ability is a subclass of the Use ability and will allow the character
to perform a melee counter attack after the character has blocked the opponent’s attack.
The ability will start after the following requirements are met:

The character blocked a melee attack. The Block ability is required in order to block
an attack.
The character has a melee weapon.
The opponent is within the Attack Distance.
The ability is started within the Counter Attack Timeframe after an attack has been
blocked.

The Animator’s Item Substate Index value will be a unique ID that indicates which counter
attack animation should be played. This ID is up to a nine digit number that has the
following format:

AAABBBCCC

AAA: First three digits indicate the Item ID of the melee weapon that was blocked by the
Block ability. The ID is an integer so any leading zeros will be truncated.
BBB: Middle three digits indicate the substate index of the use state that was blocked.
CCC: Last three digits indicate the substate index for the current ability. This is retrieved
from the Use Animator Audio State Set on the Usable Item.

For an example lets say that the opponent has a sword which has an Item ID of 22. The
opponent’s Use ability is playing an animation with an Item Substate Index of 1. Finally, the
Use Animator Audio State Set on the melee weapon returns a value of 2. The resulting ID of
this sequence of values will be 22001002.

When the Melee Counter Attack ability plays it will notify the opponent’s Counter Attack
Response ability if it has been added to the opponent character. The Counter Attack
Response ability allows the opponent to play a full body animation in response to the

https://opsive.com/support/documentation/ultimate-character-controller/character/item-abilities/use/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/item-abilities/block
https://opsive.com/support/documentation/ultimate-character-controller/animation/animator/animation-animator-structure/
https://opsive.com/support/documentation/ultimate-character-controller/items/actions/usable/
https://opsive.com/support/documentation/ultimate-character-controller/animation/animator/default-animator-values/

| 126

counter attack.

Setup

Select the + button in the item ability list under the “Item Abilities” foldout of the1.
Ultimate Character Locomotion component.
Add the Melee Counter Attack ability.2.
Add a new Melee Weapon component with a unique Action ID that should transition to3.
the correct melee attack animation when the ability is active. As an example the Sword
item has a Melee Weapon component with an Action ID of 4.
Assign the Action ID specified within step 3 to the Action ID field of the Melee Counter4.
Attack ability.
Add the Counter Attack Response ability to any characters that can be counter5.
attacked. This ability should be towards the top of the ability list so it has priority over
other abilities.

Inspected Fields

Attack Distance

The maximum distance away from the opponent that the counter attack can start.

Counter Attack Time Frame

The counter attack can start if the character blocked an attack within the specified amount
of time.

Ability Starter
The Ability Starter is an abstract class that allows you to decide when the ability should
start. It can be thought of as being similar to Ability.CanStartAbility with an Automatic start
type, except it’s generic so you don’t have to code the conditions within a specific ability.
When the Ability Start Type of Custom is selected a dropdown will appear that allows you to
select a class that inherits the AbilityStarter class.

Combo Timeout is a class that implements the Ability Starter class. In this example the
ability will start after the Fire2 then Fire1 inputs have been detected with a Button Down. If
Fire1 is not detected within 0.2 seconds from the Fire2 input then the combo will reset. This
is a relatively simple example but the Ability Starter gives you full control over when you
can start your ability.

/// <summary>
/// Can the starter start the ability?

| 127

/// </summary>
/// <param name="playerInput">A reference to the input
component.</param>
/// <returns>True if the starter can start the ability.</returns>
public abstract bool CanInputStartAbility(PlayerInput playerInput);

/// <summary>
/// The ability has started.
/// </summary>
public virtual void AbilityStarted()

/// <summary>
/// The ability has stopped running.
/// </summary>
public virtual void AbilityStopped()

/// <summary>
/// The object has been destroyed.
/// </summary>
public virtual void OnDestroy()

Move Towards Location
The Move Towards Location is an extremely useful component which determines where the
character should move towards when starting an ability. It allows for both a positional and
rotational threshold so the character doesn’t have to land on the precise point in order for
the ability to start. The Move Towards ability will do the actual movement of the character
to the closest Move Towards Location.

Setup

Select the object that is being interacted with (the button, ladder, door, etc) and add1.
the Move Towards Location component. In the case of the Interact ability the object
selected should be the same object that the Animated Interactable component is
attached to.
Adjust the Offset and Rotation Offset fields so the gizmo in the editor will be oriented2.
in the position and direction that the character should start the ability in. As an
example for the button press interact ability the gizmo should be positioned where the
character should stop and start reaching out their hand to press the button.

https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/move-towards/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/interact/

| 128

If the position or rotation is more variable for when the ability starts then the Size and3.
Angle fields should be adjusted. Adjusting the Size will show an orange line indicating
the location that is considered to be valid. A lighter green color will fill in the circle
indicating the variance allowed for the angle.

Ability Setup

The Ability class has a virtual method which allows the ability to return an array of Move
Towards Location objects:

| 129

/// <summary>
/// Returns the possible MoveTowardsLocations that the character can
move towards.
/// </summary>
/// <returns>The possible MoveTowardsLocations that the character can
move towards.</returns>
MoveTowardsLocation[] GetMoveTowardsLocations()

By returning the possible start locations it indicates to the controller that the ability
requires the character to be in a specific location before the ability can start. As an example
the Interact ability will return the MoveTowardsLocation on the GameObject that can be
interacted with:

public override MoveTowardsLocation[] GetMoveTowardsLocations()
{
 return
m_Interactable.gameObject.GetCachedComponents<MoveTowardsLocation>();
}

Inspected Fields

Offset

The offset relative to the transform that the character should move towards.

Rotation Offset

The rotation offset relative to the transform that the character should rotate towards.

Size

The size of the area that the character can start the ability at. A zero value indicates that the
character must land on the exact offset.

Distance

The ability can start when the distance between the start location and character is less then
the specified value.

Angle

The ability can start when the angle threshold between the start location and character is
less than the specified value.

Require Grounded

Is the character required to be on the ground?

Precision Start

Should the ability wait to start until all transitions are complete?

https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/interact/

| 130

Animator Motion
Root motion is a great way to ensure your character’s movements match their animations.
However, root motion isn’t always available such as in the cases when the animation wasn’t
authored for it or the character is in a first person perspective without a full body layer. In
cases like this the Animation Motion object is perfect for adding movement that matches the
animation without having to actually use root motion.

If you have the option of using root motion then it is recommended that you use root motion.
You’ll have more accurate results while also being quicker to author. Animator Motion is
useful when you don’t have the option of using root motion.

A new Animator Motion object can be created under the Create -> Ultimate Character
Locomotion -> Animator Motion menu. This new object can then be specified within the
Animator Motion field of the ability:

When the Animator Motion is specified the ability will use this object to determine how
much the character should move/rotate when the ability is active. The Animator Motion
component specifies the delta X, Y, and Z position as well as the delta X, Y, and Z Euler
rotation:

The x-axis on the curve represents the elapsed time and the y-axis represents the delta
value. In the above image only the Z-axis has a delta value beginning around the 1 second
mark. This means that when the ability starts the character will stay still for 1 second and
then start moving along the relative Z-axis. The character will keep moving until the end of
the Animator Motion duration which is 4.583 seconds after the start of the ability. No delta
rotations have been specified with this Animator Motion object.

https://docs.unity3d.com/Manual/RootMotion.html

| 131

New Ability

The ability system is designed to make it as easy as possible to add new functionality to the
controller. New abilities will likely be created often so the system does as much as it can for
you while also giving you complete flexibility. For this example we are going to create a
crawling ability. The goals of this ability are to:

Place the character in a crawling state when they approach a tunnel.
Adjust the rotation torque to prevent the character from rotating as quickly.
Prevent any items from being used when the ability is active.
Stop the ability when the character reaches the end of a tunnel.

To get started create the object that the character will actually be crawling under within the
scene. We are going to keep it basic by creating a tunnel using three scaled cubes and a
trigger that designates when the character should crawl.

Now that the basic tunnel structure is setup let’s create a new ability and derive it from the
Detect Object Ability Base class. By deriving the new ability from this class it’ll allow us to
detect when the character gets close to a tunnel. If your ability does not need to detect an
object (such as jump) then it can derive from the Ability class.

using UnityEngine;
using Opsive.UltimateCharacterController.Character.Abilities;

public class Crawl : DetectObjectAbilityBase
{

}

With this minimal code the ability is now able to be added to the Ultimate Character
Locomotion ability list. The Item Equip Verifier ability should also be added so any items can
be unequipped when the ability starts.

https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/

| 132

The following ability values need to be modified:

Ability Index Parameter: 101.
This value indicates the value that the Ability Index value within the Animator changes
to when the ability is active. This value should be unique among all of the abilities that
your character uses.
Object ID: 101.
This value indicates the unique value of the object that the Detect Object Ability Base
requires in order for the ability to start.
Object Detection: Trigger
The ability can start if the character enters a trigger.
Allow Equipped Slots: All slots should be deselected.
No items should be equipped when the ability is active. Reequip Slots should remain
enabled so after the ability has completed any unequipped items will be reequipped.

An Object ID of 101 is used which indicates the object that the ability requires in order for it
to start. To satisfy this requirement add the Object Identifier component to the tunnel’s
trigger and set the ID value to 101.

The next step is to add the animations to the Animator. For this do a search on mixamo.com
for Crawling and download the first animation:

https://www.mixamo.com/#/?page=1&query=Crawling

| 133

After you’ve imported the crawling animation perform the following on the fbx:

The Animation Type should be set to Humanoid within the Rig tab.
A new Idle animation clip should be created that spans frames 0 – 1 within the
Animations tab.
For both the Idle and Crawling clips the following should be performed:

Enable Loop Time and Loop Pose on the clip.
Enable Bake Into Pose for the Root Transform Rotation. The character controller
will control the character’s rotation instead of the animation.

The Idle clip should have the following performed:
Enable Bake Into Pose for the Root Transform Position (Y and XZ). When the Idle
animation plays the character should not move.

https://docs.unity3d.com/Manual/FBXImporter-Rig.html
https://docs.unity3d.com/Manual/class-AnimationClip.html

| 134

A new Crawling substate on the Full Body layer should be created within the Animator
Controller. The Full Body layer is used because when the Crawl ability is active only the
crawling animation can play. No items will be equipped during this time. Two states should
be added to this substate: Idle and Crawl.

| 135

The transition from Any State to Idle and Moving should contain three conditions:

AbilityIndex: Equals 101.
The 101 value was specified when the ability was added to the Ultimate Character
Locomotion component.
AbilityChange
This parameter is triggered when the ability is enabled or disabled.
Moving: True (for the Moving state), False (for the Idle state).
This parameter indicates whether or not the character is moving.

The transition between Idle and Moving only contains one condition:

Moving: True (Idle -> Moving state), False (Moving -> Idle state)

The final transition to the Exit node contains one condition:

AbilityIndex: NotEqual 101
This condition will be true when the ability is no longer active.

After the Animator has been setup hit play within Unity and the ability should activate when
the character enters the trigger. One of the first things that you’ll notice is that the ability
does not deactivate when the character leaves the trigger so this will be the first thing that
we add to the Crawl ability.

Abilities, similar to MonoBehaviours, can implement the OnTriggerExit method and it is
here that we’ll want to stop the ability as soon as the character leaves the trigger:

 /// <summary>
 /// The character has exited a trigger.
 /// </summary>

| 136

 /// <param name="other">The trigger collider that the character
exited.</param>
 public override void OnTriggerExit(Collider other)
 {
 // The detected object will be set when the ability starts and
contains a reference to the object that allowed the ability to start.
 if (other.gameObject == m_DetectedObject) {
 StopAbility();
 }

 base.OnTriggerExit(other);
 }

The character should now stop the Crawl ability when the character leaves the trigger.

The next requirement of this ability is that the character turns slower while the ability is
active. In order to achieve this we could set the rotation speed on the Ultimate Character
Locomotion component but that doesn’t make for as good of an example so for this we are
going to do it via code. If you look at the API for the Ability class you’ll see two methods that
look promising:

UpdateRotation

Update the character’s rotation values.

ApplyRotation

Verify the rotation values. Called immediately before the rotation is applied.

UpdateRotation is generally used for adding new rotations, while ApplyRotation is used to
verify that the rotations are valid. Since we are not adding any new rotation (only restricting
the existing rotation) our changes should go within ApplyRotation:

 [Tooltip("The maximum number of degrees the character can
rotate.")]
 [SerializeField] protected float m_MaxRotationAngle = 0.5f;

 /// <summary>
 /// Verify the rotation values. Called immediately before the
rotation is applied.
 /// </summary>
 public override void ApplyRotation()
 {
 var angle = Quaternion.Angle(Quaternion.identity,
m_CharacterLocomotion.Torque);
 if (angle > m_MaxRotationAngle) {
 m_CharacterLocomotion.Torque =
Quaternion.Slerp(Quaternion.identity, m_CharacterLocomotion.Torque,
m_MaxRotationAngle / angle);
 }

| 137

 }

The Torque value from the CharacterLocomotion component indicates the amount that the
character is going to rotate. If this value is greater than the max rotation angle then the
slerp method will limit the rotation.

The UpdateRotation and ApplyRotation methods are used for the rotation and there are
similar methods for position:

UpdatePosition

Update the character’s position values.

ApplyPosition

Verify the position values. Called immediately before the position is applied.

The ControllerLocomotion.MoveDirection property contains the amount that the character
is going to move.

The last requirement for this ability is that the items shouldn’t be able to be interacted with
while the ability is active. The ShouldBlockAbilityStart method can be used for this:

 /// <summary>
 /// Called when another ability is attempting to start and the
current ability is active.
 /// Returns true or false depending on if the new ability should
be blocked from starting.
 /// </summary>
 /// <param name="startingAbility">The ability that is
starting.</param>
 /// <returns>True if the ability should be blocked.</returns>
 public override bool ShouldBlockAbilityStart(Ability
startingAbility)
 {
 return startingAbility is ItemAbility;
 }

ShouldBlockAbilityStart is called when another ability tries to start. Any active ability can
prevent the ability from starting and in this case the Crawl ability will stop the ability if it is
an ItemAbility (Equip, Unequip, Use, etc). With this change the Crawl ability satisfies all of
our requirements and can now be used.

As a next step we recommend taking a look at the Ability API and existing abilities included
within the controller – the ability system is extremely powerful and makes it convenient for
adding new functionality without having to change the core classes. The complete Crawl
ability is pasted below:

using UnityEngine;
using Opsive.UltimateCharacterController.Character.Abilities;

| 138

using Opsive.UltimateCharacterController.Character.Abilities.Items;

/// <summary>
/// Places the character in a crawling state.
/// </summary>
public class Crawl : DetectObjectAbilityBase
{
 [Tooltip("The maximum number of degrees the character can
rotate.")]
 [SerializeField] protected float m_MaxRotationAngle = 0.5f;

 /// <summary>
 /// Verify the rotation values. Called immediately before the
rotation is applied.
 /// </summary>
 public override void ApplyRotation()
 {
 var angle = Quaternion.Angle(Quaternion.identity,
m_CharacterLocomotion.Torque);
 if (angle > m_MaxRotationAngle) {
 m_CharacterLocomotion.Torque =
Quaternion.Slerp(Quaternion.identity, m_CharacterLocomotion.Torque,
m_MaxRotationAngle / angle);
 }
 }

 /// <summary>
 /// Called when another ability is attempting to start and the
current ability is active.
 /// Returns true or false depending on if the new ability should
be blocked from starting.
 /// </summary>
 /// <param name="startingAbility">The ability that is
starting.</param>
 /// <returns>True if the ability should be blocked.</returns>
 public override bool ShouldBlockAbilityStart(Ability
startingAbility)
 {
 return startingAbility is ItemAbility;
 }

 /// <summary>
 /// The character has exited a trigger.
 /// </summary>
 /// <param name="other">The trigger collider that the character
exited.</param>
 public override void OnTriggerExit(Collider other)
 {
 // The detected object will be set when the ability starts and

| 139

contains a reference to the object that allowed the ability to start.
 if (other.gameObject == m_DetectedObject) {
 StopAbility();
 }

 base.OnTriggerExit(other);
 }
}

Effects
Effects can be thought of as lightweight abilities. Effects allow for extra camera/item
movements that are applied to the character. Examples of an effect include an earthquake
shake or boss stomp. Effects do not affect the Animator and are not synchronized over the
network. For anything more involved an ability should be used instead.

API

Effects can be started/stopped manually from any script by getting a reference to the
Ultimate Character Locomotion component and then calling the TryStartEffect or
TryStopEffect method on that component. These methods require a reference to the effect
that will be started/stopped and that reference can be retrieved with GetEffect.

using UnityEngine;
using Opsive.UltimateCharacterController.Character;
using Opsive.UltimateCharacterController.Character.Effects;

public class MyObject : MonoBehaviour
{
 [Tooltip("The character that should start and stop the earthquake
effect.")]
 [SerializeField] protected GameObject m_Character;

 /// <summary>
 /// Starts and stops the earthquake effect.
 /// </summary>
 private void Start()
 {
 var characterLocomotion =
m_Character.GetComponent<UltimateCharacterLocomotion>();
 var earthquakeEffect =
characterLocomotion.GetEffect<Earthquake>();
 // Tries to start the earthquake effect. There are many cases
where the effect will not start,
 // such as if it isn't enabled or if CanStartEffect returns
false.
 characterLocomotion.TryStartEffect(earthquakeEffect);

 // Stop the effect if it is active.

https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/

| 140

 if (earthquakeEffect.IsActive) {
 characterLocomotion.TryStopEffect(earthquakeEffect);
 }
 }
}

New Effect

Effects can be created relatively easily by overriding a couple of methods. The basic flow for
the effect life cycle is:

EffectStarted

The controller has started the effect.

Update

The effect is active and the controller calls the Update method to update the effect.

EffectStopped

The controller has stopped the effect.

Example

The following effect will shake the camera for 3 seconds, after which the StopEffect method
is called to stop the effect. This example uses the Scheduler to stop the effect after the event
has elapsed.

using Opsive.UltimateCharacterController.Character.Effects;
using Opsive.UltimateCharacterController.Game;
using Opsive.UltimateCharacterController.Motion;

public class MyEffect : Effect
{
 protected override void EffectStarted()
 {
 base.EffectStarted();

 Scheduler.Schedule(3, StopEffect);
 }

 public override void Update()
 {
m_CameraController.AddPositionalForce(SmoothRandom.GetVector3Centered(
1));
m_CameraController.AddRotationalForce(SmoothRandom.GetVector3Centered(
1));
 }
}

https://opsive.com/support/documentation/ultimate-character-controller/programming-concepts/scheduler/

| 141

Included Effects

Boss Stomp
The Boss Stomp effect will move the camera downward similar to how a large boss would
shake the camera as they are stomping around on the ground. The effect can be repeated a
set number of times and then will stop.

Setup

Select the + button in the effect list under the “Effects” foldout of the Ultimate1.
Character Locomotion component.
Add the Boss Stomp effect.2.
Specify the direction, strength, and the number of times the effect should stomp. A3.
RepeatCount value of -1 will play the effect until the effect is stopped or disabled.

Inspected Fields

Positional Stomp Direction

The direction to apply the positional force.

Positional Strength

The strength of the positional boss stomp.

Rotational Stomp Direction

The direction to apply the rotational force.

Rotational Strength

The strength of the rotational boss stomp.

Repeat Count

The number of times the stomp effect should play. Set to -1 to play the effect until the effect
is stopped or disabled.

Repeat Delay

The delay until the stomp plays again.

Play Audio Clip
The Play Audio Clip Effect will play the audio clip specified within the Audio Clip Set. The
effect will end after the clip has finished playing.

| 142

Setup

Select the + button in the effect list under the “Effects” foldout of the Ultimate1.
Character Locomotion component.
Add the Play Audio Clip effect.2.
Specify the clips that you want to be played within the Audio Clips list. At least one clip3.
is required for the ability to start.

Inspected Fields

Audio Clip Set

A set of AudioClips that can be played when the effect is started.

Shake
The shake effect can shake the camera, item, or character based on a force magnitude. The
effect will stop after the specified duration.

Setup

Select the + button in the effect list under the “Effects” foldout of the Ultimate1.
Character Locomotion component.
Add the Shake effect.2.
No values need to immediately be modified – the default should be a good starting3.
point.

Inspected Fields

Target

Specifies which objects to apply the shaking force to.

Force

The amount of force to apply to the shake.

Smooth Horizontal Force

Should a smooth horizontal force be added? If false a random force between 0 and Force.X
will be used.

Vertical Force Probability

Specifies the probability that a vertical force will be applied.

Fade Out Duration

The amount of time that it takes for the effect to fade out.

| 143

Positional Factor

Exaggerates or reduces the positional force imposed.

Rotational Factor

Exaggerates or reduces the rotational force imposed.

Duration

The number of seconds that the effect will last.

Generic Character
The Ultimate Character Controller supports both humanoids and generic characters.
Generic characters do not support bone retargeting so it does require more setup compared
to humanoid characters. Generic characters can be created by performing the following
steps:

Open the Character Manager and create your generic character.1.
If you don’t have an Animator Controller already created for the Ultimate
Character Controller then a new Animator Controller should be created and
specified within the Animator Controller field.
The CharacterIK and Ragdoll components cannot be added when creating the
character. These components use Unity features which rely on humanoid bones
in order to function properly.

Build your character. If Foot Effects is enabled then the foot transform needs to be2.
specified within the Character Foot Effects component.

https://docs.unity3d.com/Manual/Retargeting.html
https://opsive.com/support/documentation/ultimate-character-controller/editors/character/
https://opsive.com/support/documentation/ultimate-character-controller/surface-system/character-foot-effects/

| 144

Time
There are two ways to manipulate time:

Change the Time Scale within the Unity Time Manager. This changes the time scale
for all objects within the scene.
Change the Time Scale within the Ultimate Character Locomotion. This will change
the time scale for only the character. A negative value cannot be set.

When the time scale is changed on the character any objects spawned from the character
will also have the same time scale. As an example if you throw a grenade when the
character has a 0.5 time scale then the grenade will take twice as long as normal to move.

Events

When the character’s time scale changes the “OnChangeTimeScale” event will be sent from
the built-in Event System. A corresponding Unity event will also be sent. No event will be
sent when the time scale is changed through the Unity Time Manager. The following
example will subscribe to this event from a new component:

using UnityEngine;
using Opsive.Shared.Events;

public class MyObject : MonoBehaviour
{
 /// <summary>
 /// Initialize the default values.
 /// </summary>

https://docs.unity3d.com/Manual/class-TimeManager.html
https://opsive.com/support/documentation/ultimate-character-controller/programming-concepts/events/
https://unity3d.com/learn/tutorials/topics/scripting/events

| 145

 public void Awake()
 {
 EventHandler.RegisterEvent<float>(gameObject,
"OnCharacterChangeTimeScale", OnChangeTimeScale);
 }

 /// <summary>
 /// The character's local timescale has changed.
 /// </summary>
 /// <param name="timeScale">The new timescale.</param>
 private void OnChangeTimeScale(float timeScale)
 {
 Debug.Log("New time scale: " + timeScale);
 }

 /// <summary>
 /// The GameObject has been destroyed.
 /// </summary>
 public void OnDestroy()
 {
 EventHandler.UnregisterEvent<float>(gameObject,
"OnCharacterChangeTimeScale", OnChangeTimeScale);
 }
}

Minimum Component Setup
The Ultimate Character Controller is designed to be extremely modular so if you don’t want
to use a certain piece of functionality then you can just not include that component. For
example, if your character doesn’t need the health system then the Character Health
component doesn’t need to be added. The Character Manager makes it easy to add/remove
various components so it is recommended that the components be added through this editor
interface.

https://opsive.com/support/documentation/ultimate-character-controller/editors/character/

| 146

The minimum set of components required are:

Rigidbody (kinematic)
Ultimate Character Locomotion
Character Layer Manager
A CapsuleCollider or SphereCollider

If your character is controlled by the player (rather than being AI or networked controlled)
then the following components should be added:

Ultimate Character Locomotion Handler
Player Input (Unity Input component or equivalent input integration component)

If your character is a third person character (including AI or networked) then your
character also needs:

Animator
Animator Monitor

Camera
The Camera Controller component is responsible for moving the camera to the correct
rotation and position. When the character is attached to a camera (such as for a player-
controlled, non AI character) then the Camera Controller is also responsible for determining
which direction the character should look or use their item. As a result of this the Camera
Controller is required for any player-controlled character.

The Camera Controller component doesn’t determine the actual position or rotation that the
camera should move towards. It instead uses View Types to determine those values for it.
View types can be thought of as Abilities but for the camera. View types allow for complete
flexibility in terms of how the camera behaves without having to change the core Camera
Controller component. View types can also be used to integrate with any external camera
controllers, such as Cinemachine.

https://unity3d.com/learn/tutorials/topics/animation/using-cinemachine-getting-started
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/
https://opsive.com/support/documentation/ultimate-character-controller/camera/view-types/included-view-types/third-person-cinemamachine/

| 147

When the Camera Controller starts it will first try to attach to the character specified by the
Character field if Init Character On Awake is enabled. If this option is enabled but there
isn’t a character specified then it’ll show a warning and search for the GameObject that has
the Player tag. If there still is no character found then the Camera Controller will disable
itself until a Character is assigned.

While the Camera Controller does provide the information so the character knows where to
look/use an item, the Camera Controller should not be used for artificial intelligence (AI) or
networked characters. See the corresponding AI and networking pages for information on
how these characters should be setup.

API

When the camera initializes it will either assign the character automatically based on the
Player tag or use the character set within the inspector. If you’d like to change which
character the camera follows you can set the Character property. If this value is set to null
then the camera will disable itself. The camera can also change perspective with the
SetPerspective method if the camera has a first and third person view type added to it. View
types can be changed with the SetViewType method.

using UnityEngine;
using Opsive.Shared.Camera;
using Opsive.Shared.Utility;
using Opsive.UltimateCharacterController.Camera;

public class MyObject : MonoBehaviour
{
 [Tooltip("The character that should be assigned to the camera.")]
 protected GameObject m_Character;

 /// <summary>
 /// Sets a third person perspective on the Camera Controller.
 /// </summary>
 private void Start()
 {
 var camera = CameraUtility.FindCamera(null);
 if (camera == null) {
 return;
 }

 var cameraController =
camera.GetComponent<CameraController>();
 cameraController.Character = m_Character;
 cameraController.SetPerspective(false); // false indicates the
third person perspective.

 // Switch to the third person Combat View Type.
 var viewTypeName =
"Opsive.UltimateCharacterController.ThirdPersonController.Camera.ViewT

https://opsive.com/support/documentation/ultimate-character-controller/artificial-intelligence/
https://opsive.com/support/documentation/ultimate-character-controller/multiplayer/

| 148

ypes.Combat";
cameraController.SetViewType(TypeUtility.GetType(viewTypeName),
false);
 }
}

Events

The Camera Controller exposes two events using the built-in Event System:
OnChangeViewTypes and OnChangePerspectives. Corresponding Unity events are also
exposed for these two events.

OnChangeViewTypes

The “OnCameraChangeViewTypes” event will be execute when the Camera Controller
activates or deactivates a view type. This event can be subscribed to with:

EventHandler.RegisterEvent<ViewType, float>(gameObject,
"OnCameraChangeViewTypes", OnChangeViewTypes);

The gameObject variable in this example is referring to the Camera’s GameObject. This
event includes the view type that was changed as well as if the view type was activated or
deactivated.

/// <summary>
/// The view type has changed.
/// </summary>
/// <param name="viewType">The ViewType that was activated or
deactivated.</param>
/// <param name="activate">Should the current view type be
activated?</param>
private void OnChangeViewType(ViewType viewType, bool activate)
{
 Debug.Log("The ViewType " + viewType.GetType().Name + " was "
+ (activate ? "activated" : "deactivated") + ".");
}

OnChangePerspectives

The “OnCameraChangePerspectives” event will be executed when the Camera Controller
switches from a first to third perspective or from a third to first perspective. This event can
be subscribed with:

EventHandler.RegisterEvent<bool>(gameObject,
"OnCameraChangePerspectives", OnChangePerspectives);

The gameObject variable in this example is referring to the Camera’s GameObject. The only
parameter sent with this event includes a bool indicating if the camera is now in a first
person perspective (true) or a third person perspective (false).

https://opsive.com/support/documentation/ultimate-character-controller/programming-concepts/events/
https://unity3d.com/learn/tutorials/topics/scripting/events

| 149

/// <summary>
/// The camera perspective between first and third person has changed.
/// </summary>
/// <param name="firstPersonPerspective">Is the camera in a first
person perspective?</param>
private void OnChangePerspectives(bool firstPersonPerspective)
{
 Debug.Log("The camera is now in a " + (firstPersonPerspective
? "first" : "third") + " person perspective.");
}

OnZoom

The “OnCameraZoom” event will be executed when the Camera Controller starts or stop
zooming. This event can be subscribed to with:

EventHandler.RegisterEvent<bool>(gameObject, "OnCameraZoom", OnZoom);

The gameObject variable in this example is referring to the Camera’s GameObject. The only
parameter sent with this event includes a bool indicating if the camera is zoomed (true) or
not zoomed (false).

/// <summary>
/// The camera has toggled zoom state.
/// </summary>
/// <param name="zoomed">Is the camera zoomed?</param>
private void OnZoom(bool zoomed)
{
 Debug.Log("The camera is now in a " + (zoomed ? "zoomed" :
"not zoomed") + " state.");
}

Inspected Fields

Init Character On Awake

Should the character be initialized on awake?

Character

The character that the camera should follow.

Anchor

The transform of the object to attach the camera relative to. This for example allows the
camera to be attached to the character’s head instead of the base pivot position. Note that if
the camera is attached to a body part that moves there will be a lot more motion when the
character moves.

| 150

Auto Anchor

Should the anchor be assigned automatically based on the humanoid bone?

Auto Anchor Bone

The bone that the anchor will be assigned to if AutoAnchor is enabled.

Anchor Offset

The offset between the anchor and the camera.

First Person View Type

The active first person ViewType. This will only be shown if both the First Person Controller
and Third Person Controller is imported.

Third Person View Type

The active third person ViewType. This will only be shown if both the First Person Controller
and Third Person Controller is imported.

Can Change Perspectives

Can the camera change perspectives?

Can Zoom

Can the camera zoom?

Zoom State

The state that should be activated when zoomed.

View Types
View Types define the rotation and the position that the camera should orient itself towards.
The camera uses the horizontal and vertical inputs (Mouse X/Mouse Y by default) from the
PlayerInput component in order to determine which direction it should move. The default
view type will rotate the camera, move the character, and then position the camera. This
order allows the character to correctly orient itself towards the camera direction.

View Types can be selected within the ViewType Reorderable List on the Camera Controller
component. View Types can be added and removed through this list as well.

| 151

API

View Types can be retrieved by using the GetViewType method on the Camera Controller
component. The ActiveViewType property will contain a reference to the View Type that is
currently being used by the Camera Controller.

using UnityEngine;
using Opsive.Shared.Camera;
using Opsive.UltimateCharacterController.Camera;

public class MyObject : MonoBehaviour
{
 /// <summary>
 /// Retrieves the combat view type.
 /// </summary>
 private void Start()
 {
 var camera = CameraUtility.FindCamera(null);
 if (camera == null) {
 return;
 }

 var combatViewType =
camera.GetComponent<CameraController>().GetViewType<Opsive.UltimateCha
racterController.FirstPersonController.Camera.ViewTypes.Combat>();
 if (combatViewType != null) {
 Debug.Log("Found the Combat view type.");
 }
 }
}

Create a New View Type

It is rare that you will need to create a new View Type but if you do it is pretty straight
forward if you do need to do so. New View Types can be created by inheriting the ViewType
class and implementing three methods:

/// <summary>
/// Rotates the camera according to the horizontal and vertical
movement values.

| 152

/// </summary>
/// <param name="horizontalMovement">-1 to 1 value specifying the
amount of horizontal movement.</param>
/// <param name="verticalMovement">-1 to 1 value specifying the amount
of vertical movement.</param>
/// <param name="immediateUpdate">Should the camera be updated
immediately?</param>
/// <returns>The updated rotation.</returns>
Quaternion Rotate(float horizontalMovement, float verticalMovement,
bool immediateUpdate);

/// <summary>
/// Moves the camera according to the current pitch and yaw values.
/// </summary>
/// <param name="immediateUpdate">Should the camera be updated
immediately?</param>
/// <returns>The updated position.</returns>
Vector3 Move(bool immediateUpdate);

/// <summary>
/// Returns the direction that the character is looking.
/// </summary>
/// <param name="lookPosition">The position that the character is
looking from.</param>
/// <param name="characterLookDirection">Is the character look
direction being retrieved?</param>
/// <param name="layerMask">The LayerMask value of the objects that
the look direction can hit.</param>
/// <param name="useRecoil">Should recoil be included in the look
direction?</param>
/// <returns>The direction that the character is looking.</returns>
Vector3 LookDirection(Vector3 lookPosition, bool
characterLookDirection, int layerMask, bool useRecoil);

Rotate

The Rotate method will do the actual rotation for the camera. A quaternion is returned
which the Camera Controller will then use to set the rotation of the camera.

Move

The Move method will position the camera. A Vector3 is returned which the Camera
Controller will then use to set the position of the camera.

LookDirection

Specifies the direction that the character should look. This method is called by the
character/item classes when it need to retrieve the a directional rotation, such as
determining which direction the head should look for IK or determining which direction a

| 153

weapon should fire.

The following properties must also be implemented:

public abstract bool FirstPersonPerspective { get; }
public abstract float Pitch { get; }
public abstract float Yaw { get; }
public abstract Quaternion CharacterRotation { get; }
public abstract float LookDirectionDistance { get; }

FirstPersonPerspective

Is the View Type used when the character is in a first person perspective?

Pitch

Returns the pitch of the camera. This property is used when switching View Types.

Yaw

Returns the yaw of the camera. This property is used when switching View Types.

CharacterRotation

Returns the rotation of the character. This property is used when switching View Types.

LookDirectionDistance

Specifies the max distance that the character can look ahead from their current position.
This is mostly used by the View Type within the LookDirection method.

Example

The following View Type is an example of a complete view type that will keep the camera in
the same position/rotation. It can be used as a stationary camera.

using Opsive.UltimateCharacterController.Camera.ViewTypes;

public class MyViewType : ViewType
{
 private float m_Pitch;
 private float m_Yaw;
 private Quaternion m_CharacterRotation;

 public override bool FirstPersonPerspective { get { return false;
} }
 public override float Pitch { get { return m_Pitch; } }
 public override float Yaw { get { return m_Yaw; } }
 public override Quaternion CharacterRotation { get { return
m_CharacterRotation; } }

| 154

 public override float LookDirectionDistance { get { return 100; }
}

 public override void ChangeViewType(bool activate, float pitch,
float yaw, Quaternion characterRotation)
 {
 if (activate) {
 m_Pitch = pitch;
 m_Yaw = yaw;
 m_CharacterRotation = characterRotation;
 }
 }

 public override Quaternion Rotate(float horizontalMovement, float
verticalMovement, bool immediateUpdate)
 {
 return m_Transform.rotation;
 }

 public override Vector3 Move(bool immediateUpdate)
 {
 return m_Transform.position;
 }

 public override Vector3 LookDirection(Vector3 lookPosition, bool
characterLookDirection, int layerMask, bool useRecoil, bool
includeMovementSpread)
 {
 return m_CharacterTransform.forward;
 }
}

Included View Types

First Person
The First Person view type is an abstract view type that will move the camera in the
direction of the input mapped to the camera.The view type uses the spring system to allow
for bobs, sways, shakes, and reaction to external forces.If the attached character has a
humanoid then the view type will follow along with the local delta changes of the neck.This
will prevent the camera from looking on the inside of the character model.

First Person Camera

With a single camera in a first person view it’s possible for the character’s hands and items
to clip the object in front of them.Consider the following screenshot which shows a
character standing in front of a wall with the assault rifle equipped.

https://opsive.com/support/documentation/ultimate-character-controller/animation/springs/

| 155

The common solution for this is to add a second camera that just renders the hands and
items (the Overlay layer in the Ultimate Character Locomotion). With this solution the
objects will no longer clip the wall:

When a first person view type is added to the Camera Controller it will automatically add
the first person camera if the camera does not already exist.This camera will be added as a
child to the main camera and have the correct values set for the camera’s render settings.

A second camera is not needed if you are using the universal render pipeline – see this page
for more details.

Head Bob

When the character is idle or moving the First Person View Type will play a bobbing
animation based on the Shake Speed and Shake Amplitude. If you notice bobbing only while
the character is moving this is likely caused by the Smooth Head Offset Steps field. See the

https://opsive.com/support/documentation/ultimate-character-controller/camera/universal-render-pipeline/

| 156

details below for a in-depth description of this field.

Inspected Fields

Look Direction Distance

The distance that the character should look ahead.

Look Offset

The offset between the anchor and the camera.

Look Down Offset

Amount to adjust the camera position by when the character is looking down. This will
prevent the camera from clipping the character’s body mesh.

Culling Mask

The culling mask of the camera.

Field Of View

The field of view of the main camera.

Field Of View Damping

The damping time of the field of view angle when changed.

First Person Position Offset

Specifies the position offset from the camera that the first person objects should render.

First Person Rotation Offset

Specifies the rotation offset from the camera that the first person objects should render.

Object Overlay Render Type

Specifies how the overlay objects are rendered. This field is only shown if the lightweight or
universal render pipelines are imported.

Second Camera: Use a second stacked camera to ensure the overlay objects do no clip
with any other objects.
Render Pipeline: Use the URP/HDRP render pipeline to ensure the overlay objects do
no clip with any other objects.
None: No special rendering for the overlay objects.

Use First Person Camera

Should the first person camera be used? The first person camera may not want to be used if

| 157

the first person objects (arms/items) should intersect with scene objects, such as for an
interact animation. This field is shown if the lightweight and universal render pipelines are
not imported.

First Person Camera

A reference to the first person camera.This camera will render the items/character hands to
prevent clipping with overlapping objects.

First Person Culling Mask

The culling mask of the first person camera.

Synchronize Field Of View

Should the first person camera’s field of view be synchronized with the main camera?

First Person Field Of View

Specifies the field of view for the first person camera.

First Person Field Of View Damping

The damping time of the field of view angle when changed.

Position Lower Vertical Limit

A vertical limit intended to prevent the camera from intersecting with the character.

Position Fall Impact

Determines how much the camera will be pushed down when the player falls onto a surface.

Position Fall Impact Softness

The number of frames that the fall impact force should be applied.

Rotation Strafe Roll

Rotates the camera depending on the sideways local velocity of the character, resulting in
the camera leaning into or away from its sideways movement direction.

Rotation Fall Impact

Determines how much the camera will roll when the player falls onto a surface.

Rotation Fall Impact Softness

The number of frames that the fall impact force should be applied.

| 158

Position Spring

The positional spring used for regular movement.

Rotation Spring

The rotational spring used for regular movement.

Secondary Position Spring

The positional spring which returns to equilibrium after a small amount of time (for recoil).

Secondary Rotation Spring

The rotational spring which returns to equilibrium after a small amount of time(for recoil).

Min Pitch Limit

The minimum pitch angle(in degrees).

Max Pitch Limit

The maximum pitch angle(in degrees)

Bob Positional Rate

The rate that the camera changes its position while the character is moving.

Bob Positional Amplitude

The strength of the positional camera bob.Determines how far the camera swings in each
respective direction.

Bob Roll Rate

The rate that the camera changes its roll rotation value while the character is moving.

Bob Roll Amplitude

The strength of the roll within the camera bob. Determines how far the camera tilts from
left to right.

Bob Input Velocity Scale

This tweaking feature is useful if the bob motion gets out of hand after changing character
velocity.

Bob Max Input Velocity

A cap on the velocity value from the bob function, preventing the camera from flipping out
when the character travels at excessive speeds.

| 159

Bob Min Through Vertical Offset

A trough should only occur when the bob vertical offset is less then the specified value.

Bob Trough Force

The amount of force to add when the bob has reached its lowest point.This can be used to
add a shaking effect to the camera to mimick a giant walking.

Bob Require Ground Contact

Determines whether the bob should stay in effect only when the character is on the ground.

Shake Speed

The speed that the camera should shake.

Shake Amplitude

The strength of the shake.Determines how much the camera will tilt.

Smooth Head Offset Steps

If the character is a humanoid the First Person View Type will follow the character’s head
position. This prevents the camera from seeing inside the character’s model when the
character has a different vertical height (such as if the character is crouching). This head
tracking will also give a slight bob as the character is moving. You can disable the head
tracking completely by setting the Smooth Head Offset Steps field to 0. This field specifies
the number of head positions the camera remembers when determining the head position.
The larger the value to more positions will be remembered which gives a smoother result.

Collision Radius

The radius of the camera’s collision sphere to prevent it from clipping with other objects.

Rotate With Head

Should the camera rotate as the character’s head rotates?

Vertical Offset Lerp Speed

The speed at which the camera moves to the target VerticalOffset. This is only used when
the character does not have a head bone.

Combat
The Combat view type extends the First Person view type by allowing the camera to change
yaw values. This view type will move the camera in a manner common to most first person
games. The First Person Combat movement type should be used in conjunction with this
view type.

https://opsive.com/support/documentation/ultimate-character-controller/camera/view-types/included-view-types/first-person/
https://opsive.com/support/documentation/ultimate-character-controller/character/movement-types/included-movement-types/first-person-combat/

| 160

Free Look
The Free Look view type extends the First Person view type by allowing the camera to move
independently of the character. With the Free Look view type weapon will fire in the
direction that it is currently facing rather then in the camera’s look direction. The First
Person Free Look movement type should be used in conjunction with this view type.

Inspected Fields

Min Yaw Limit

The minimum yaw angle (in degrees).

Max Yaw Limit

The maximum yaw angle (in degrees).

Yaw Limit Lerp Speed

The speed in which the camera should rotate towards the yaw limit when out of bounds.

Rotate With Character

Should the view type rotate with the character’s rotation?

First Person Transform Look
The First Person Transform Look ViewType is a first person view type that will move and
rotate according to the specified Transform. This view type is most useful for when the first
person character dies and the camera should look from the perspective of the character
(such as the head).

Inspected Fields

Move Target

The object that determines the position of the camera.

Rotation Target

The object that determines the rotation of the camera.

Offset

The offset relative to the move target.

Collision Radius

The radius of the camera’s collision sphere to prevent it from clipping with other objects

https://opsive.com/support/documentation/ultimate-character-controller/camera/view-types/included-view-types/first-person/
https://opsive.com/support/documentation/ultimate-character-controller/character/movement-types/included-movement-types/first-person-free-look/
https://opsive.com/support/documentation/ultimate-character-controller/character/movement-types/included-movement-types/first-person-free-look/

| 161

Move Speed

The speed at which the camera should move.

Rotation Lerp Speed

The speed at which the view type should rotate towards the target rotation.

Restrict Pitch

Should the pitch be restricted? If false the pitch can be changed by the player.

Min Pitch Limit

The minimum pitch angle (in degrees), used if the pitch is not restricted.

Max Pitch Limit

The maximum pitch angle (in degrees), used if the pitch is not restricted.

Restrict Yaw

Should the yaw be restricted? If false the yaw can be changed by the player.

Third Person
The Third Person view type is an abstract view type that will move the camera in the
direction of the input mapped to the camera. The view type will orbit around the character
while always have the character in view, making sure no objects obstruct the view. The
spring system can also be used for things such as recoil or camera shakes.

Inspected Fields

Look Direction Distance

The distance that the character should look ahead.

Look Offset

The offset between the anchor and the camera.

Look Offset Smoothing

The amount of smoothing to apply to the look offset. Can be zero.

Forward Axis

The forward axis that the camera should adjust towards.

https://opsive.com/support/documentation/ultimate-character-controller/animation/springs/

| 162

Field Of View

The field of view of the main camera.

Field Of View Damping

The damping time of the field of view angle when changed.

Collision Radius

The radius of the camera’s collision sphere to prevent it from clipping with other objects.

Collision Anchor Offset

The offset from the anchor position when determining if there is a collision.

Position Smoothing

The amount of smoothing to apply to the position. Can be zero.

Obstruction Position Smoothing

The amount of smoothing to apply to the position when an object is obstructing the target
position. Can be zero.

Update Character Rotation

Should the rotation of the character be updated? Set to false to prevent the camera from
rotating with the character.

Align To Gravity Rotation Speed

The lerping speed when determining the align to gravity character rotation.

Min Pitch Limit

The minimum pitch angle (in degrees).

Max Pitch Limit

The maximum pitch angle (in degrees).

Position Spring

The positional spring used for regular movement.

Rotation Spring

The rotational spring used for regular movement.

| 163

Secondary Position Spring

The positional spring which returns to equilibrium after a small amount of time (for recoil).

Secondary Rotation Spring

The rotational spring which returns to equilibrium after a small amount of time (for recoil).

Step Zoom Input Name

The name of the step zoom input mapping.

Step Zoom Sensitivity

Specifies how quickly the camera zooms when step zooming.

Min Step Zoom

The minimum distance that the step zoom can zoom.

Max Step Zoom

The maximum distance that the step zoom can zoom.

Adventure
The Adventure view type extends the Third Person view type by allow the camera’s yaw
angle to rotate freely. A minimum and maximum yaw value can be specified. The Third
Person Adventure movement type should be used in conjunction with this view type.

Inspected Fields

Min Yaw Limit

The minimum yaw angle (in degrees).

Max Yaw Limit

The maximum yaw angle (in degrees).

Combat
The Combat view type extends the Third Person view type while keeping the camera rotated
to the same local yaw value as the character. This in effect will always have the character
rotated in the same forward direction as the camera. The Third Person Combat movement
type should be used in conjunction with this view type.

https://opsive.com/support/documentation/ultimate-character-controller/character/movement-types/included-movement-types/third-person-adventure/
https://opsive.com/support/documentation/ultimate-character-controller/character/movement-types/included-movement-types/third-person-adventure/
https://opsive.com/support/documentation/ultimate-character-controller/character/movement-types/included-movement-types/third-person-combat/

| 164

RPG
The RPG view type extends the Third Person view type for a control scheme similar to the
standard setup of the RPG genre. This movement type allows for free yaw movement when
the Camera Free Movement button is down, but will otherwise follow behind the character.
The RPG movement type should be used in conjunction with this view type.

Inspected Fields

Yaw Snap Damping

The damping of the yaw angle when it snaps back to behind the character as the character
moves.

Camera Free Movement Input Name

The name of the camera free movement input damping.

Third Person Look At
The Third Person Look At view type will orient the camera so it is looking at the target. If no
target is specified the camera will look towards the character’s pivot position. This view
type is useful for the death camera showing the character’s ragdoll reacting to the physics
forces or the death animation playing.

Inspected Fields

Target

The object to look at. If this value is null then the character’s transform will be used.

Offset

The offset relative to the character.

Min Look Distance

The minimum distance away from the target that the camera should move towards.

Max Look Distance

The maximum distance away from the target that the camera should move towards.

Move Speed

The speed at which the camera should move.

https://opsive.com/support/documentation/ultimate-character-controller/character/movement-types/included-movement-types/third-person-rpg/

| 165

Collision Radius

The radius of the camera’s collision sphere to prevent it from clipping with other objects.

Rotational Lerp Speed

The speed at which the view type should rotate towards the target rotation.

Rotation Spring

The spring used for applying a rotation to the camera.

Third Person Pseudo3D (2.5D)
The Pseudo3D view type places the camera in a 2.5D view, allowing the camera to look at
the character from the side. The Pseudo3D (2.5D) movement type should be used in
conjunction with this view type. If the 2.5D movement type is active and references a path
then the camera will follow that path.

Inspected Fields

Look Direction Distance

The distance that the character should look ahead.

Forward Axis

The forward axis that the camera should adjust towards.

View Distance

The distance to position the camera away from the anchor.

Vertical Dead Zone

The camera will readjust the position/rotation if the character moves outside of this vertical
dead zone.

Move Smoothing

The amount of smoothing to apply to the movement. Can be zero.

Rotation Smoothing

The amount of smoothing to apply to the rotation. Can be zero.

Depth Look Direction

Should the look direction account for depth offsets? This is only used when the mouse is
visible.

https://opsive.com/support/documentation/ultimate-character-controller/character/movement-types/included-movement-types/third-person-pseudo3d-2-5d/

| 166

Secondary Position Spring

The positional spring which returns to equilibrium after a small amount of time (for recoil).

Secondary Rotation Spring

The rotational spring which returns to equilibrium after a small amount of time (for recoil).

Third Person Top Down
The Top Down view type allows the camera to be placed in a top down perspective with the
character in view. The Top Down movement type should be used in conjunction with this
view type.

Inspected Fields

Look Direction Distance

The distance that the character should look ahead.

Forward Axis

The forward axis that the camera should adjust towards.

Up Axis

The up axis that the camera should adjust towards.

Rotation Speed

The speed at which the camera rotates to face the character.

Min Pitch Limit

The minimum pitch angle (in degrees).

Max Pitch Limit

The maximum pitch angle (in degrees).

Collision Radius

The radius of the camera’s collision sphere to prevent it from clipping with other objects.

View Distance

The distance to position the camera away from the anchor.

https://opsive.com/support/documentation/ultimate-character-controller/character/movement-types/included-movement-types/third-person-top-down/

| 167

View Step

The number of degrees to adjust if the anchor is obstructed by an object.

Move Smoothing

The amount of smoothing to apply to the movement. Can be zero.

Vertical Look Direction

Should the look direction account for vertical offsets? This is only used when the mouse is
visible.

Allow Dynamic Camera Rotation

Can the camera dynamically rotate when a state has been changed?

Desired Angle

The desired angle if the camera is dynamically rotating.

Change Angle Speed

The speed at which the camera rotates if it is dynamically rotating.

Rotation Transition Curve

The curved used by the dynamic camera rotation.

Secondary Position Spring

The positional spring which returns to equilibrium after a small amount of time (for recoil).

Secondary Rotation Spring

The rotational spring which returns to equilibrium after a small amount of time (for recoil).

Transition
The Transition view type will transition the camera from one view type to another. This view
type should not explicitly be set but will instead be activated when changing from one view
type to another. The view type has different transition durations depending on which
perspective the camera is transitioning from/to. If a value of 0 is specified for any of these
durations then the camera will instantly be transition to the new view type.

Inspected Fields

First to Third Transition Duration

The amount of time to transition from a third person to first person person.

| 168

Start First Person Camera Offset

The starting offset when transition from a first person perspective to third person.

Third to First Transition Duration

The amount of time to transition from a third person to first person perspective.

End First Person Camera Offset

The ending offset when transition from a third person perspective to first person.

Third to Third Transition Duration

The amount of time to transition from a third person to another third person perspective

Aim Assist
The Aim Assist component allows for the camera and character to automatically face the
specified target. A crosshairs with the Crosshairs Monitor is required. If Aim Assist is active
the crosshairs will notify that it has found a target and that the character/camera should
look in the target’s direction.

Setup

Add the Aim Assist and the Aim Assist Handler components to your camera.1.
Ensure the Crosshairs Monitor has been added to your crosshairs. The Aim Assist2.
component will target any object that uses the Character’s Enemy Layer.
Set the desired values of the fields on the Aim Assist Handler and Aim Handler. The3.
value that will most likely require modification is the Influence field of the Aim Assist
component.
The Aim Assist component has the option to target humanoid bones through the Target4.
Humanoid Bone field. If the target is not a humanoid the Aim Assist Offset component
can be added to the target GameObject to apply an offset to the look direction.

Inspected Fields

Assist Aim

Should the component assist with the aiming?

Require Active Aim

Does the Aim ability need to be active in order for the component to assist with aiming?

Max Distance

The maximum distance that the target can be away from the character in order to start
influence the aim.

https://opsive.com/support/documentation/ultimate-character-controller/layer-manager/

| 169

Influence

The amount of influence the aim assist has on the camera rotation. The x value represents
the angle delta between the current camera rotation and the camera rotation. The y value
represents the amount of influence at that angle. A y value of 1 indicates complete influence
while a value of 0 indicates no influence.

Target Offset

Specifies an offset to apply to the target.

Target Humanoid Bone

If the target is a humanoid should a bone from the humanoid be targeted?

Humanoid Bone Target

Specifies which bone to target if targeting a humanoid bone.

Break Force

The magnitude required in order to break the current target lock.

Switch Target Radius

If trying to switch targets, specifies the radius that the nearby targets should be in.

Switch Target Rotation Speed

If switching targets, specifies the speed at which the camera rotates to face the new target.

Max Switch Target Colliders

The maximum number of colliders that should be considered within the target switch.

Object Fader
The Object Fader component has the option of fading either the character or any
obstructing objects. In order for the object to be faded it must be using a material which
uses a shader that supports transparency.

| 170

Character Fade

If character fade is enabled then the character will fade if the camera gets too close to the
camera. This option is most useful with a third person view type. The character’s materials
must be using a shader that supports transparency. Any material that is on the character
which supports transparency will fade if the character fading option is enabled.

Cache Character Materials

Should the character materials be cached at the start? If false the material values will be
saved each time the character starts to fade. This option should generally be enabled unless
your character swaps out materials.

Start Fade Distance

The distance between the character and the camera that the character should start to fade.

End Fade Distance

The distance between the character and camera that the character materials should be
completely invisible.

Character Fade State Change Cooldown

Prevents the character change from updating for the specified number of seconds after a
state change.

Transform Offset

The offset to apply to the character when detecting if the character should fade/is
considered obstructed.

Obstructing Objects Fade

| 171

If Obstructing Objects fade is enabled then any objects between the character and the
camera will be faded. This option is most useful with a top down or 2.5D view type. The
obstructing object’s materials must be using a shader that supports transparency.

Collision Radius

The radius of the camera’s collision sphere to prevent it from clipping with other objects. If
a top down view type is being used it is recommend that this value is greater than or equal
to the collision radius for the top down view type.

Fade Speed

Specifies the speed at which the obstructing material can fade.

Fade Color

The color that the obstructed object will fade to.

Auto Set Mode

Should the material mode be set automatically when an object is obstructing the view? If
you don’t want any obstructing object to be able to be faded then this option should be set
to false and any objects that you want to be able to fade should use a transparent shader.

Disable Collider

Should the obstructing object’s collider be disabled when the material is faded? This is
useful so physics raycasts won’t detect a faded object.

Max Obstructing Collider Count

The maximum number of obstructing colliders that can be faded at one time.

| 172

Max Obstructing Material Count

The maximum number of obstructing materials that can be faded at one time. This value
should be greater than the collider count.

Transform Offset

The offset to apply to the character when detecting if the character should fade/is
considered obstructed.

Post Processing
Post processing effects are an awesome addition to any project and will give your project
that next-gen look. In third person view the post processing effects can be assigned to the
character’s camera (the camera with the Camera Controller component). While in first
person view there are some special considerations:

Post processing effects should be assigned to one of the two cameras available which
follow your character.
Post processing effects assigned to the First Person Camera (beneath the character’s
camera) will affect the scene AND the first person arms/items.
Post processing effects assigned to the character camera will only affect the scene and
NOT the first person arms/items.

Split Screen
When in a first person perspective the third person materials are swapped for an invisible
shadow castor material. This then allows the separate first person arms object to render
without seeing duplicate arms (or the character’s head from getting in the way of the
camera). This works well for single player games, but with split screen games or mirrors the
material needs to be swapped multiple times so other players don’t see a character without
any arms or head.

| 173

The Split Screen Camera component will do this material swap allowing for multiple
cameras on the same screen.

Setup

Add a camera using the Scene Setup Manager.1.
Duplicate that camera. Ensure only one Audio Listener exists within the scene.2.
Create a new character using the Character Manager.3.
Create a second character using the Character Manager.4.
Add the Material Swapper component to the GameObjects that contain the5.
CameraController.

If you are using a first person only variant (such as UFPS), then after you have
created the character you should replace the Invisible Shadow Caster material on
the third person objects with the correct material. For example, with the included
Nolan character the materials on the Helmet Renderer should be updated to the

https://opsive.com/support/documentation/ultimate-character-controller/getting-started/setup/scene-setup/
https://docs.unity3d.com/Manual/class-AudioListener.html
https://opsive.com/support/documentation/ultimate-character-controller/getting-started/setup/character-creation/

| 174

helmet material:

If you are not using a Scriptable Render Pipeline add the Material Swapper component6.
to the First Person Camera that is a child of the main camera. Your setup should look
similar to:

The Material Swapper component exists on the four Camera GameObjects.
Adjust the Camera’s Viewport Rect so the cameras do not render over each other. In7.
the above scene the left viewport was adjusted so it has a width of 0.5. The right
camera has a X value of 0.5 and a width of 0.5.

On the Camera Controller component set the Character field to the first character, and8.
the second camera’s Character field should be set to the second character.

Ensure the UI is added from the Setup Manager. Duplicate this UI for the second9.
character. The UI then needs to know which character it represents. On each UI
Monitor assign the character:

Assign the player-specific inputs to the character. The Unity Input System integration10.
or Rewired integration makes it easy to have multiple inputs attached to a single
instance.

Items
The item system is a generic implementation allowing for a wide variety of uses. Items are
any object that the character can carry, such as an assault rifle, sword, bow, grenade,
shield, flashlight, or book. When a new item is built it is placed under the Item GameObject
which is a child of the character.

https://opsive.com/support/documentation/ultimate-character-controller/integrations/input-system/
https://opsive.com/support/documentation/ultimate-character-controller/integrations/rewired/
https://opsive.com/support/documentation/ultimate-character-controller/editors/item/

| 175

An item is identified by the Item Definition ScriptableObject. This Item Definition must be
unique for each slot and is purely a representation of the item GameObject that should be
interacted with. Item Definitions allow you to easily reference which item should be picked
up within the ItemPickup component, or which item should be used by the Use ability. Each
item GameObject is required to have the Item component and this component implements
the logic for more general item-related functions such as initialization, being picked up,
equipped, dropped, etc.

The object that is actually held by the character and rendered on the screen is managed by
the Item Perspective component. A First Person Item Perspective and a Third Person Item
Perspective component should be added to the item GameObject depending on which
perspective the item will be view with. The Item Perspective component is responsible for
managing the item rendered to the screen. The First Person Item Perspective component
makes extensive use of the spring system to move the item in a realistic way while in a first
person perspective.

When an ability is activated that performs an action on the item (such as a melee slash or
grenade throw) it calls the corresponding Item Action component to perform the actual
action. Multiple Item Action components can be added to the same item GameObject which
will allow for the item to perform multiple functions. A classic example of this is an assault
rifle that can shoot or be used as a blunt object and melee attack. Another example could be
a light sword attack or a heavy sword attack.

The Item Perspective Properties is the last type of component that you’ll see added to an
Item GameObject and this component is responsible for storing values specific to the
corresponding perspective for the Item Action component. As an example the Shootable
Weapon component will use the First Person Perspective Properties component to point to
the location of the muzzle flash for the first person assault rifle. A Third Person Perspective
Properties component will point to the location of the muzzle flash for the third person
assault rifle.

With all of these components added to the Item GameObject you’ll see a setup similar to the

https://opsive.com/support/documentation/ultimate-character-controller/inventory/slots/
https://opsive.com/support/documentation/ultimate-character-controller/items/perspective/
https://opsive.com/support/documentation/ultimate-character-controller/items/perspective/first-person/
https://opsive.com/support/documentation/ultimate-character-controller/items/perspective/third-person/
https://opsive.com/support/documentation/ultimate-character-controller/items/perspective/third-person/
https://opsive.com/support/documentation/ultimate-character-controller/animation/springs/
https://opsive.com/support/documentation/ultimate-character-controller/items/actions/

| 176

image below. In this image the item is setup for both a first and third person perspective,
and it also can be used as a shootable weapon or a melee weapon.

Inspected Fields

Item Definition

A reference to the object used to identify the item.

Slot ID

Specifies the inventory slot/spawn location of the item.

Animator Item ID

Unique ID used for item identification within the animator.

Animator Movement Set ID

The movement set ID used for within the animator.

Dominant Item

Does the item control the movement and the UI shown?

Unique Item Set

Does the item belong to a unique Item Set?

Allow Camera Zoom

Can the camera zoom when the item is equipped?

Drop Prefab

The GameObject that is dropped when the item is removed from the character.

Full Inventory Drop

When the item is dropped should the entire item be dropped? Throwable Items will want
this option enabled.

https://opsive.com/support/documentation/ultimate-character-controller/inventory/item-sets/

| 177

Drop Consumable Items

Should the consumable items be dropped along with the current item?

Equip Event

Specifies if the item should wait for the OnAnimatorItemEquip animation event or wait for
the specified duration before equipping. This field uses an Animation Event Trigger.

Equip Complete Event

Specifies if the item should wait for the OnAnimatorItemEquipComplete animation event or
wait for the specified duration before stopping the equip ability. This field uses an
Animation Event Trigger.

Equip Animator Audio State Set

Specifies the animator and audio state from an equip. This field uses an Animator Audio
State Set.

Unequip Event

Specifies if the item should wait for the OnAnimatorItemUnequip animation event or wait
for the specified duration before unequipping. This field uses an Animation Event Trigger.

Unequip Complete Event

Specifies if the item should wait for the OnAnimatorItemUnequipComplete animation event
or wait for the specified duration before stopping the unequip ability. This field uses an
Animation Event Trigger.

Unequip Animator Audio State Set

Specifies the animator and audio state from an unequip. This field uses an Animator Audio
State Set.

UI Monitor ID

The ID of the UI Monitor that the item should use.

Icon

The sprite representing the icon.

Show Crosshairs On Aim

Should the crosshairs be shown when the item aims?

Center Crosshairs

The sprite used for the center crosshairs image.

https://opsive.com/support/documentation/ultimate-character-controller/animation/animation-event-trigger/
https://opsive.com/support/documentation/ultimate-character-controller/animation/animation-event-trigger/
https://opsive.com/support/documentation/ultimate-character-controller/items/animator-audio-state-set/
https://opsive.com/support/documentation/ultimate-character-controller/items/animator-audio-state-set/
https://opsive.com/support/documentation/ultimate-character-controller/animation/animation-event-trigger/
https://opsive.com/support/documentation/ultimate-character-controller/animation/animation-event-trigger/
https://opsive.com/support/documentation/ultimate-character-controller/items/animator-audio-state-set/
https://opsive.com/support/documentation/ultimate-character-controller/items/animator-audio-state-set/

| 178

Quadrant Offset

The offset of the quadrant crosshairs sprites.

Max Quadrant Spread

The max spread of the quadrant crosshairs sprites caused by a recoil or reload.

Quadrant Spread Damping

The amount of damping to apply to the spread offset.

Left Crosshairs

The sprite used for the left crosshairs image.

Top Crosshairs

The sprite used for the top crosshairs image.

Right Crosshairs

The sprite used for the right crosshairs image.

Bottom Crosshairs

The sprite used for the bottom crosshairs image.

Show Full Screen UI

Should the item’s full screen UI be shown?

Events

Four Unity events are exposed by the item:

Pickup Item
Equip Item
Unequip Item
Drop Item

These events can be assigned within the item’s inspector.

Perspective
A Perspective Item represents the object that is actually rendered in the game. The
Perspective Item class is an abstract class and is implemented by the First Person
Perspective Item and the Third Person Perspective Item depending on which perspective is
being rendered. The main responsibility of the perspective components are to spawn and to
determine the location that the item should be rendered at. While both the first and third

https://unity3d.com/learn/tutorials/topics/scripting/events
https://opsive.com/support/documentation/ultimate-character-controller/items/perspective/first-person/
https://opsive.com/support/documentation/ultimate-character-controller/items/perspective/first-person/
https://opsive.com/support/documentation/ultimate-character-controller/items/perspective/third-person/

| 179

person components can use the spring system, the springs are more prevalent in a first
person perspective because the component needs to handle bobs, sways, falls, etc. With a
third person perspective the item is more restricted to the parent object (such as the hand).

Inspected Fields

Object

The GameObject of the object rendered. Can be a prefab or a GameObject that is a child of
the character.

Local Spawn Position

If Object is a prefab, specifies the local position of the spawned object.

Local Spawn Rotation

If Object is a prefab, specifies the local rotation of the spawned object.

First Person
The First Person Perspective Item will position and rotate the first person objects according
to spring forces.This can be using in conjunction with regular animations allowing for more
complex motions such as reloading.Similar to the first person camera, the perspective item
allows for bobs, sways, shakes, and reaction to external forces.

Inspected Fields

First Person Base Object ID

The ID of the First Person Base Object that the item should be spawned under. This is used
when the item is picked up at runtime.

Visible Item

The GameObject of the visible item. This is the actual item object such as the assault rifle or
sword.The Object from the Perspective Item parent class contains a reference to the arms
that the visible item is spawned as a child of.

VR Hand Parent

Should the pivot be positioned as the immediate parent of the VisibleItem? This is useful for
VR.

Additional Control Objects

Any additional objects that the item should control the location of.This is useful for dual
wielding where the item should update the location of another base object.

https://opsive.com/support/documentation/ultimate-character-controller/animation/springs/
https://opsive.com/support/documentation/ultimate-character-controller/camera/view-types/included-view-types/first-person/
https://opsive.com/support/documentation/ultimate-character-controller/items/runtime-pickup/

| 180

Addition Control Object Base IDs

Any additional object IDs that the item should control the location of. This is useful for dual
wielding where the item should update the location of another base object.

Position Spring

The positional spring used for regular movement (bob, sway, etc).

Position Offset

An offset relative to the parent pivot Transform. This position is where the item “wants to
be”. It will try to go back to this position after any forces are applied.

Position Exist Offset

An offset relative to the parent pivot Transform.This is the desired position when the item is
moving off screen (in the case of unequipping).

Position Fall Impact

Determines how much the item will be pushed down when the player falls onto a surface.

Position Fall Impact Softness

The number of frames over which to even out each the fall impact force.

Position Fall Retract

Makes the weapon pull backward while falling.

Position Move Slide

Sliding moves the item in different directions depending on the character movement
direction

X slides the item sideways when strafing.
Y slides the item down when strafing.
Z slides the item forward or backward when walking.

Position Platform Slide

Sliding which moves the item in different directions depending on the moving paltform’s
velocity.”

Position Input Velocity Scale

A tweak parameter that can be used if the spring motion goes out of hand after changing
character velocity. Use this slider to scale back the spring motion without having to adjust
lots of values.

| 181

Position Max Input Velocity

A cap on the velocity value being fed into the item swaying method, preventing the item
from flipping out when the character travels at excessive speeds (such as when affected by
a jump pad or a speed boost). This also affects vertical sway.

Rotation Spring

The rotational spring used for the regular movement (bob, sway, etc).

Rotation Offset

An offset relative to the parent pivot Transform. This rotation is where the item “wants to
be”. It will try to go back to this rotation after any forces are applied.

Rotation Exit Offset

An offset relative to the parent pivot Transform.This is the target rotation when the item is
moving off screen (in the case of unequipping).

Rotation Fall Impact

Determines how much the item will roll when the player falls onto a surface.

Rotation Fall Impact Softness

The number of frames over which to even out each the fall impact force.

Rotation Look Sway

This setting determines how much the item sways (rotates) in reaction to input movements.
Horizontal and vertical movements will sway the weapon spring around the Y and X vectors,
respectively.Rotation around the Z vector is hooked to horizontal movement, which is very
useful for swaying long melee items such as swords or clubs.

Rotation Strafe Sway

Rotation strafe sway rotates the item in different directions depending on character
movement direction.

X rotates the item up when strafing (it can only rotate up).
Y rotates the item sideways when strafing.
Z twists the item around the forward vector when strafing.

Rotation Vertical Sway

This setting rotates the item in response to vertical motion (e.g.falling or walking in stairs).
Rotations will have opposing direction when falling versus rising.However, the weapon will
only rotate around the Z axis while moving downwards / falling.

| 182

Rotation Platform Sway

Sliding which rotates the item in different directions depending on the moving paltform’s
velocity.

Rotation Ground Sway Multiplier

This parameter reduces the effect of item vertical sway when moving on the ground. At a
value of 1 the item behaves as if the player behaves normally. A value of 0 will disable
vertical sway altogether when the character is grounded.

Rotation Input Velocity Scale

A tweak parameter that can be used to temporarily alter the impact of input motion on the
item rotation spring, for example in a special player state.

Rotation Max Input Velocity

A cap on the velocity value being fed into the item swaying method, preventing the item
from flipping out when extreme mouse sensitivities are being used.

Pivot Position Spring

The positional spring used for the item pivot Transform.

Pivot Position Offset

An offset relative to the parent First Person Object Transform.

Pivot Rotation Spring

The rotational spring used for the item pivot Transform.

Pivot Rotation Offset

An offset relative to the parent First Person Object Transform.

Shake Speed

Determines the shaking speed of the item.

Shake Amplitude

The strength of the angular item shake around the X, Y and Z vectors.

Bob Positional Rate

The rate that the item changes its position while the character is moving.Tip: y should be (x*
2) for a nice classic curve of motion.

| 183

Bob Positional Amplitude

The strength of the positional item bob. Determines how far the item swings in each
respective direction.Tip: make x and y negative to invert the curve.

Bob Rotational Rate

The rate that the item changes its rotation value while the character is moving.

Bob Rotational Amplitude

The strength of the rotation within the item bob. Determines how far the item tilts in each
respective direction

Bob Input Velocity Scale

A tweak parameter that can be used if the bob motion goes out of hand after changing
player velocity.

Bob Max Input Velocity

A cap on the velocity value being fed into the bob function, preventing the item from
excessive movement when the character travels at high speeds.

Bob Require Ground Contact

Determines whether the bob should stay in effect only when the character is on the ground.

Step Min Velocity

Sets the minimum squared controller velocity at which footstep impacts will occur on the
item. The system will be disabled if is zero (default).

Step Softness

The number of frames over which to even out each footstep impact.A higher number will
make the footstep softer (more like regular bob). A lower number will be more ‘snappy’

Step Position Force

A vector relative to the item determining the amount of force it will receive upon each
footstep.Note that this parameter is very sensitive. A typical value is less than 0.01.

Step Rotation Force

Determines the amount of angular force the item will receive upon each footstep. Note that
this parameter is very sensitive. A typical value is less than 0.01.

Step Force Scale

Scales the impact force.It can be used for tweaking the overall force when you are satisfied

| 184

with the axes’ internal relations.

Step Position Balance

Simulates shifting weight to the left or right foot, by alternating the positional footstep force
every other step.Use this to reduce or enhance the effect of limping.

Step Rotation Balance

Simulates shifting weight to the left or right foot, by alternating the angular footstep force
every other step.Use this to reduce or enhance the effect of limping.

Third Person
The main responsibility of the Third Person Perspective Item is the correctly spawn/parent
item objects in the hierarchy. Unlike the First Person Perspective Item, the Third Person
Perspective Item doesn’t need to position the rendered item every frame because the item
will be parented to the character’s bone and doesn’t require as much dynamic movement.

IK Positioning

All of the animations were made using the rig provided by the character included in the
demo scene, Nolan. If the humanoid character that you are using has slightly different
proportions compared to the demo rig then the animations won’t precisely match like they
do with the demo character. This is just how the retargeting feature works within Unity and
for the best results you should use animations that match your character’s rig.

You can also use IK to correct some of the animation issues by using the Non Dominant
Hand IK Target field on the Third Person Perspective Item component. This field will use IK
to reposition the non-dominant hand of the character. The non-dominant hand is the hand
that the item is not parented to. The Non Dominant Hand IK Hint field specifies the location
of the hint bone. With Unity’s IK implementation this is the elbow location. This feature only
works with humanoid characters.

As an example lets use the Ethan character from the Standard Assets. If we pull this
character in and attach an assault rifle you’ll notice that the left hand is moving through the
handle:

https://docs.unity3d.com/Manual/Retargeting.html
https://docs.unity3d.com/ScriptReference/AvatarIKHint.html

| 185

This can be corrected by assigning a transform to the Non Dominant Hand IK Target field
that will use IK to reposition the hand.

In this example a new GameObject was created that is a child of the Assault Rifle.

| 186

When using this method to position the character’s non-dominant hand they will have a
problem reloading because the IK system will keep their hand in place. You can use the
state system to set the Hand Weight of the CharacterIK component to 0 when the Reload
ability is active.

Holstering

When the item is unequipped you may want the item to be holstered instead of
disappearing. This can be done by setting the holster target field within the Third Person
Item Perspective component.

This holster target can be set one of two ways:

Assign the Holster Target field directly within the Third Person Perspective Item
component. This works best when the item is not added at runtime. The target
Transform should be a child of the character’s rig.

If the Holster Target field is null then the Holster Target ID field can be used. If this ID
is not -1 then when the item is added it will look for a holster target based on the ID of
the Object Identifier component. The Object Identifier component should be added to a
GameObject that is the child of the character’s rig, similar to above.

Inspected Fields

Use Parent Humanoid Bone

Should the Object object be spawned based on the character’s humanoid bone?

https://opsive.com/support/documentation/ultimate-character-controller/state-system/

| 187

Parent Humanoid Bone

If using the humanoid bone, specifies which bone to use.

Non Dominant Hand IK Target

The location of the non-dominant hand which should be placed by the IK implementation.

Non Dominant Hand IK Target Hint

The location of the non-dominant hand hint which should be placed by the IK
implementation.

Holster Target

The transform that the item should be holstered to when unequipped.

Holster ID

The ID of the HolsterIdentifier component that the item should be holstered to when
unequipped. This id will be used when holster target is null and the the ID is -1.

Actions
The item and perspective components will handle displaying and positioning the item, but
the item won’t be able to do anything with just those components. The Item Action
component will allow the item to perform an action, such as firing a bullet, melee slashing,
or being thrown. Any number of item actions can be added to the item – the Item Action ID
allows the item ability to determine which action to perform the interaction on. New actions
can be added through the Item Manager.

Multiple Item Actions Setup

Add all of the actions that you’d like your item to be able to perform through the1.
Existing Items tab of the Item Manager. In this example we are using the assault rifle
and adding the melee weapon action so the assault rifle can both shoot and be used as
a melee object.

Make a note of the Action ID of the new action that was just added to the item. This ID2.
will be increased sequentially from the previous ID. The assault rifle previously only
contained a single action (the Shootable Weapon) so the ID of the Melee Weapon will
be 1.
Add any Item Abilities that should use the newly added action. For the Melee Weapon3.
the Use ability should be added. An Action ID of 1 should be specified so the Use
ability will know which action should be used.

https://opsive.com/support/documentation/ultimate-character-controller/editors/items/
https://opsive.com/support/documentation/ultimate-character-controller/character/item-abilities/
https://opsive.com/support/documentation/ultimate-character-controller/character/item-abilities/use/

| 188

Usable
A Usable Item is any item that can be triggered by the Use ability. The Usable Item will
determine common use functionality such as the rate that the item is used or if the item
uses an animation event to indicate that it is done being used.

Inspected Fields

Use Rate

The amount of time that must elapse before the item can be used again.

Can Equip Empty Item

Specifies if the inventory can equip an item that doesn’t have any consumable items left.

Face Target

Should the character rotate to face the target during use?

Stop Use Ability Delay

The amount of extra time it takes for the ability to stop after use. This is useful for
preventing the item from immediately going back to the idle state after hip firing.

Use Event

Specifies if the item should wait for the OnAnimatorItemUse animation event or wait for the
specified duration before being used. This field uses an Animation Event Trigger.

Use Complete Event

Specifies if the item should wait for the OnAnimatorItemUseComplete animation event or
wait for the specified duration before completing the use. This field uses an Animation Event
Trigger.

Force Root Motion Position

Does the item require root motion position during use?

Force Root Motion Rotation

Does the item require root motion rotation during use?

https://opsive.com/support/documentation/ultimate-character-controller/character/item-abilities/use/
https://opsive.com/support/documentation/ultimate-character-controller/animation/animation-event-trigger/
https://opsive.com/support/documentation/ultimate-character-controller/animation/animation-event-trigger/
https://opsive.com/support/documentation/ultimate-character-controller/animation/animation-event-trigger/

| 189

Attribute Modifier

Optionally specify an attribute that the item should affect when in use.

Play Audio On Start Use

Should the audio play when the item starts to be used? If false it will be played when the
item is used. Melee Weapons will generally have a false value.

Use Animator Audio State Set

Specifies the animator and audio state that should be triggered when the item is used. This
field uses an Animator Audio State Set.

Flashlight
The Flashlight Item Action allows the character to turn on or off a flashlight.When the
flashlight is used the light GameObject is toggled between an active and inactive state. An
optional battery attribute can disable the flashlight after it is empty.

Inspected Fields

Battery Modifier

The battery attribute that should be modified when the flashlight is active.

Magic
The Magic Item Action is an extremely flexible Item Action which allows the item to perform
a wide variety of magic and spell related actions. The Magic Item relies on sub-actions to
perform the actual work: BeginActions, CastActions, ImpactActions, and EndActions. Using
the sub-actions the Magic Item can spawn particles, objects, surface effects, audio, etc. New
actions can be created by implementing the base class.

Begin/End Actions

Begin Actions starting playing at the start of the item use until the Use event is sent.When
the Use event occurs the Cast Action will trigger. For Single Use Type Magic Items the End
Actions will start playing immediately after the Use event occurs. Continuous Use Type
Magic Items will start playing the End Action when the Magic Item is starting to be stopped.
Both actions will stop when the item is no longer being used.

Begin and End Actions implement the same base class so the same object can be used for
either the start or end of the Magic Item use. These actions allow for starting or ending
effects effects, such as starting to fade the character before a teleport or spawn a local
particle system that should occur after the actual cast.

https://opsive.com/support/documentation/ultimate-character-controller/items/animator-audio-state-set/

| 190

Fade Material

Fades the materials on the character.

Play Audio Clip

Plays an audio clip.

Spawn Particle

Spawns a particle.

Cast Actions

Cast Actions are the primary sub-action within the Magic Item. Cast Actions occur when the
Use event is sent and is the main visual that you see for the Magic Item. Common cast
actions include spawning a particle, but other cast actions can spawn any arbitrary object or
start an effect on the character.

When a Cast Action collides with an object it can start an Impact Action. This allows for
effects to be played at the impact location.

Physics Cast

Uses the physics system to determine the impacted object.

Play Audio Clip

Plays an audio clip when the cast is performed.

Spawn Object

Spawns an object when the cast is performed.

Spawn Particle

Spawns a particle when the cast is performed.

Spawn Projectile

Spawns a projectile when the cast is performed.

Start Effect

Starts an effect on the character.

Target Impact

Immediately calls impact on the object at the target position.

https://opsive.com/support/documentation/ultimate-character-controller/character/effects/

| 191

Teleport

Teleports the character.

Impact Actions

Impact Actions play an effect at the location determined by the Cast Action. Frequent
Impact Actions will be to spawn a particle or change an Attribute value.

Add Force

Adds a force to the impacted object.

Add Torque

Adds a torque to the impacted object.

Damage

Damages the impacted object.

Heal

Heals the impacted object.

Modify Attribute

Modifies the specified attribute on the impacted object.

Play Audio Clip

Plays an AudioClip on the impacted object.

Ricochet

The Ricochet action will cast a new CastAction for nearby objects, creating a ricochet effect.

Spawn Particle

Spawns a ParticleSystem upon impact.

Spawn Surface Effect

Spawns a SurfaceEffect upon impact. The SurfaceImpact object is specified on the
MagicItem.

Collision

When a Cast Action effect plays it can collide with other objects to play an Impact Action.
This collision can occurs with one of the following methods:

https://opsive.com/support/documentation/ultimate-character-controller/attributes/

| 192

Particle Collision

Unity’s Particle System has the option of sending collision messages when the particle
collides with another object. In order for the collision message to be received the Magic
Particle component must be added to the Particle System that can cause the collision.

Projectile

The Magic Projectile component will trigger an impact when it collides with another object.
The Magic Particle component uses the Trajectory Object component to do its actual
movement.

Raycast

If the Physics Cast Cast Action is used then a raycast will be performed when the Cast
Action is run. This raycast will execute the Impact Actions immediately.

Inspected Fields

Require Grounded

Is the character required to be on the ground?

Direction

The direction of the cast.

None: The cast has no movement.
Forward: The cast should move in the forward direction.
Target: The cast should move towards a target.
Indicate: The cast should move towards an indicated position.

https://docs.unity3d.com/Manual/PartSysCollisionModule.html
https://opsive.com/support/documentation/ultimate-character-controller/objects/trajectory-object/magic-projectile
https://opsive.com/support/documentation/ultimate-character-controller/objects/trajectory-object/

| 193

Use Look Source

Should the look source be used when determining the cast direction?

Max Distance

The maximum distance of the movement cast direction.

Radius

The radius of the movement cast direction.

Detect Layers

The layers that the movement directions can collide with.

Max Angle

The maximum angle that the target object can be compared to the character’s forward
direction.

Max Collision Count

The maximum number of colliders that can be detected by the target cast.

Target Count

The number of objects that a single cast should cast.

Surface Indicator

The transform used to indicate the surface. Can be null.

Surface Indicator Offset

The offset when positioning the surface indicator.

Use Type

Specifies how often the cast is used.

Single: The cast should occur once per use.
Continuous: The cast should occur ever use update.

Min Continuous Use Duration

The minimum duration of the continuous use type. If a value of -1 is set then the item will be
stopped when the stop is requested.

| 194

Continuous Cast

Should the continuous use type cast every update?

Use Amount

The amount of the ItemIdentifier that should be used each cast.

Interrupt Source

Specifies when the cast should be interrupted.

Movement: The cast should be interrupted when the character moves.
Damage: The cast should be interrupted when the character takes damage.

Surface Impact

The SurfaceImpact of the cast.

Can Stop Substate Index Addition

The value to add to the Item Substate Index when the item can stop.

Melee Weapon
The Melee Weapon Item Action allows the character to attack using a melee weapon such as
a sword or a baseball bat. Using the Animator Audio State Set from the parent Usable
component the melee weapon can chain animations together allowing for combos. The
First/Third Person Melee Weapon Properties component will also be attached to the item
and this component contains the properties that are specific for that perspective.

Attack Troubleshooting

If your melee weapon gets stuck after being used the first time ensure you have checked the
following:

The correct Use Animator Audio State Set elements are set. These options are
available under the Use foldout. The demo animator controller has two different attack
types so two different states must be set. The animator will get stuck if there is only
one state specified. More details can be found in the Melee Weapon video.

If only one Use Animator Audio State Set element is specified, Allow Attack Combos

https://opsive.com/support/documentation/ultimate-character-controller/items/animator-audio-state-set/
https://opsive.com/support/documentation/ultimate-character-controller/items/actions/usable/
https://opsive.com/support/documentation/ultimate-character-controller/items/animator-audio-state-set/
https://youtu.be/-E-m9a8Sn1U?t=579

| 195

should be deselected under the Melee foldout.
Ensure the correct Animation Event Triggers are set. New animation events may need
to be added with new attack animations.

Hitboxes

The First/Third Person Melee Weapon Perspective contains a “Hitboxes” foldout and within
this foldout you can specify the hitboxes that the weapon should use. For most melee
weapons you’ll only have one hitbox – a collision box representing the area that the area of
the melee weapon that can impact with other objects. In the case of the body item there are
four hitboxes: two for the character’s hands and two for the character’s feet. This allows the
character to punch or kick using the same item. Hitboxes can use a SphereCollider,
BoxCollider, or CapsuleCollider.

In this screenshot the right fist is selected. A Damage Multiplier can be specified which will
multiply the Melee Weapon’s Damage Amount by the specified value. This allows certain
colliders to inflict more damage compared to others, such as a kick inflicting more damage
than a punch.

The Minimum Y Offset and Minimum Z Offset fields specify the relative offset that the
collider position needs to be above in order to inflict damage. This is useful for the leg
collider as it prevents a hit from occurring when the foot is on the ground. Single Hit should
be enabled if the collider should only do damage once per melee attack. The Surface Impact
field allows you to specify a Surface Impact for when the melee weapon collides with
another object.

You’ll see a colored gizmo rendered in the scene view when the item is selected in the
hierarchy:

https://opsive.com/support/documentation/ultimate-character-controller/animation/animation-event-trigger/
https://opsive.com/support/documentation/ultimate-character-controller/surface-system/surface-impacts/

| 196

The color will interpolate between green, yellow, and red. The lower the Damage Multiplier
value the more green the hitbox will be. The higher the Damage Multiplier the more red the
hitbox will be.

Melee Trail

The melee trail object can dynamically draw a smooth curve indicating the previous position
of the melee object. This is most often used when the Melee Weapon is attacking, but it can
also always be shown (this is set with the Trail Visibility field). A new melee trail object
should be created with the Object Manager:

Open the Object Manager and create a new object of type Melee Trail.1.
Assign the new trail object to the Melee Weapon’s Trail field.2.
Create a child GameObject that specifies the location that the trail should spawn at.3.
This object should be created for each perspective and should be a child of the
perspective’s visible object.

https://opsive.com/support/documentation/ultimate-character-controller/editors/objects/
https://opsive.com/support/documentation/ultimate-character-controller/editors/objects/

| 197

First
Person Trail Object

Third
Person Trail Object

Specify the newly created GameObject under the Trail Location field of the First4.
Person and Third Person Melee Weapon Properties.
Specify when the trail should show with the Trail Visibility field on the Melee Item.5.

Combos

If Allow Attack Combos is enabled the weapon can transition to the next attack state before
the current attack state has completed. A new combo can be started after the Use Event has
been triggered and before the Use Complete Event has been triggered. Lets say that you
have the following states listed for your Melee Weapon:

Lets say that the state with an Item Substate Index of 2 is currently playing and the Use
Event is triggered after 1 second. The Use Complete event is then triggered 0.5 seconds
after the Use Event. With this setup the following flow will occur:

The state is started at a time of 0 seconds.
Another attack input is received at 0.6 seconds, the current state is not interrupted
because the Use Event has not triggered.
The Use Event is triggered at 1 second.
Another attack input is received at 1.1 seconds, the current state transitions to the

| 198

next state (with an Item Substate Index of 3) because at this point the Use Event has
triggered.
Another attack input is received at 1.5 seconds, the current state is not interrupted
because the Use Event has not triggered.
The Use Event is triggered at 2.1 seconds.
The Use Complete Event is triggered at 2.6 seconds.

Impact Callback

When the melee weapon collides with another object the “OnObjectImpact” event will be
sent from the built-in Event System. A corresponding Unity event will also be sent. This
event allows you to add new functionality when the impact occurs without having to change
the class at all. The following example will subscribe to this event from a new component:

using UnityEngine;
using Opsive.Shared.Events;

public class MyObject : MonoBehaviour
{
 /// <summary>
 /// Initialize the default values.
 /// </summary>
 public void Awake()
 {
 EventHandler.RegisterEvent<float, Vector3, Vector3,
GameObject, object, Collider>(gameObject, "OnObjectImpact", OnImpact);
 }

 /// <summary>
 /// The object has been impacted with another object.
 /// </summary>
 /// <param name="amount">The amount of damage taken.</param>
 /// <param name="position">The position of the damage.</param>
 /// <param name="forceDirection">The direction that the object
took damage from.</param>
 /// <param name="attacker">The GameObject that did the
damage.</param>
 /// <param name="attackerObject">The object that did the
damage.</param>
 /// <param name="hitCollider">The Collider that was hit.</param>
 private void OnImpact(float amount, Vector3 position, Vector3
forceDirection, GameObject attacker, object attackerObject, Collider
hitCollider)
 {
 Debug.Log(name + " impacted by " + attacker + " on collider "
+ hitCollider + ".");
 }

 /// <summary>

https://69.16.254.154/support/documentation/ultimate-character-controller/programming-concepts/events/
https://unity3d.com/learn/tutorials/topics/scripting/events

| 199

 /// The GameObject has been destroyed.
 /// </summary>
 public void OnDestroy()
 {
 EventHandler.UnregisterEvent<float, Vector3, Vector3,
GameObject, object, Collider>(gameObject, "OnObjectImpact", OnImpact);
 }
}

Inspected Fields

Require In Air Melee Ability In Air

Does the weapon require the In Air Melee Use Item Ability in order to be used while in the
air?

Require Counter Attack Ability

Does the weapon require the Melee Counter Attack Item Ability in order to be used?

Aim Item Substate Index Addition

The value to add to the Item Substate Index when the character is aiming.

Max Collision Count

The maximum number of collision points which the melee weapon can make contact with.

Forward Shield Sensitivity

The sensitivity amount for how much the character must be looking at the hit object in order
to detect if the shield should be used (-1 is the most sensitive and 1 is least).

Single Hit

When the weapon attacks should only one hit be registered per use?

Multi Hit Frame Count

If multiple hits can be registered, specifies the minimum frame count between each hit.

Can Hit Delay

The delay after the weapon has been used when a hit can be valid.

Allow Attack Combos

Can the next use state play between the ItemUsed and ItemUseComplete events?

| 200

Impact Layers

A LayerMask of the layers that can be hit by the weapon.

Trigger Interaction

Specifies if the melee weapon can detect triggers.

Damage Amount

The amount of damage done to the object hit.

Impact Force

The amount of force to apply to the object hit.

Impact Force Frames

The number of frames to add the impact force to.

Impact State Name

The name of the state to activate upon impact.

Impact State Disable Timer

The number of seconds until the impact state is disabled. A value of -1 will require the state
to be disabled manually.

Surface Impact

The Surface Impact triggered when the weapon hits an object.

Apply Recoil

Should recoil be applied when the weapon hits an object?”

Recoil Animator Audio State Set

Specifies the animator and audio state from a recoil.

Trail

A reference to the trail prefab that should be spawned.

Trail Visibility

Specifies when the melee weapon trail should be shown.

Attack: The trail is only visible while attacking.
Always: The trail is always visible.

| 201

Trail Spawn Delay

The delay until the trail should be spawned after it is visible.

Attack Stop Trail Event

Specifies if the item should wait for the OnAnimatorStopTrail animation event or wait for
the specified duration before stopping the trail during an attack.

On Impact Event

Unity event invoked when the weapon hits another object.

Shootable Weapon
The Shootable Weapon Item Action allows the character to attack using a ranged object
such as an assault rifle or a bow and arrow. The Shootable Weapon can attack using a
raycast (hitscan) or a projectile. The weapon can also reload when the object no longer has
any ammo. The First/Third Person Shootable Weapon Properties component will also be
attached to the weapon and it contains properties that are specific for that perspective.

Firing Troubleshooting

If you are unable to fire a new Shootable Weapon ensure you have checked the following:

The inventory has ammo. An easy way to ensure this is true is to add your Consumable
Item Definition to the Default Loadout of the inventory.
The use event is being fired. The weapon won’t try to be fired until the used event is
triggered and this can be specified with the Use Event Animation Event Trigger on the
shootable weapon.
The weapon is facing in the fire direction. The weapon won’t fire until after it is facing
in the direction that it should be fired. This sensitivity can be adjusted within the Look
Sensitivity field of the First/Third Person Shootable Weapon Properties component. If
the sensitivity is set to -1 then the weapon will always fire no matter which direction
the weapon is facing.

Muzzle Flash

When the weapon fires a muzzle flash can be shown. This muzzle flash uses a mesh that will
fade with time. A light can also be attached which will also reduce intensity as time elapses.
A muzzle flash can be created with the Object Manager:

Open the Object Manager and create a new object of type Muzzle Flash.1.
Assign the new object to the Shootable Weapon’s Muzzle Flash field.2.
When a Shootable Weapon is created the “Muzzle Flash” GameObject will be created3.
by default on the perspective’s visible object. This GameObject should be specified for
the Muzzle Flash Location field of the First Person and Third Person Shootable
Weapon Properties.

https://opsive.com/support/documentation/ultimate-character-controller/animation/animation-event-trigger/
https://opsive.com/support/documentation/ultimate-character-controller/editors/objects/
https://opsive.com/support/documentation/ultimate-character-controller/editors/objects/

| 202

Smoke

When the weapon fires a smoke particle system can be spawned from the weapon. This
particle system will be disabled when it has completed. Smoke can be created with the
Object Manager:

Open the Object Manager and create a new object of type Smoke.1.
Assign the new object to the Shootable Weapon’s Smoke field.2.
Create a new GameObject as a child of the perspective’s visible object. This3.
GameObject should be at the same level in the hierarchy as the Fire Point. This new
GameObject for the Smoke Location field of the First Person and Third Person
Shootable Weapon Properties.

Reloadable Clip

When the weapon is reloaded the clip that is attached to the weapon can be removed during
the reload animation. If the Reloadable Clip Attachment Transform is specified within the
First/Third Person Shootable Weapon Properties then the clip will be reparented to the
object specified when the Reload Detach Event triggers. The clip will then be parented back
to the original trnasform when the Reload Attach Event is triggered.

Scope

A scope can optionally be specified which uses a separate camera to show a zoomed in view
of the target. This scope can be setup by doing the following:

Add the scope camera to your item. This camera should be added to both the first and1.
third person item under the rig. It should not be added to the item object that
contains the Shootable Weapon component under the character/Items parent.

https://opsive.com/support/documentation/ultimate-character-controller/editors/objects/
https://opsive.com/support/documentation/ultimate-character-controller/editors/objects/

| 203

Reference this camera in the Scope Camera field of the First/Third Person Shootable2.
Weapon Properties component.
Decide when you want the camera to be active. By default the camera will be active3.
but you can only it activate it when the character is aiming by toggling the Disable
Scope Camera On No Aim field within the Shootable Weapon component.
Create a new Render Texture asset and point the scope camera’s Target Texture field4.
to this new render texture.
Create a new material that uses the render texture. For the assault rifle we created5.
the material below (Albedo specifies the render texture). This material uses a custom
overlay shader to display the scope on top of the texture.

Apply the material to the object that you’d like to use as the scope.6.

The scope has been setup but the camera won’t zoom any closer for a specific weapon when
the Aim ability is activated. The state system can be used to adjust the values at runtime
when the scoped weapon is equipped and the aim ability is activated. This can be achieved
by performing the following:

On the Aim ability ensure the State field has the value of “Aim” and Append Item is1.
enabled. This will append the name that is set on the Item Set within the Item Set
Manager.
Add the state to your view type that should be activated when the Aim ability is2.
activated with the equipped item. In the demo scene there are two states setup:

AimAssaultRifle
AimSniperRifle

https://docs.unity3d.com/Manual/class-RenderTexture.html
https://opsive.com/support/documentation/ultimate-character-controller/state-system/
https://opsive.com/support/documentation/ultimate-character-controller/inventory/item-sets/
https://opsive.com/support/documentation/ultimate-character-controller/camera/view-types/

| 204

Full Screen UI

When the sniper rifle aims a full screen UI appears that blocks the game view besides the
center portion. The full screen UI can be setup by performing the following steps:

Add the Full Screen UI Monitor component to the UI object that you’d like to enable1.
when the weapon should aim. In the ID field for this component you should specify the
unique ID of the FullScreenUI object. In our case we will just be using this UI object
for the sniper rifle so for the ID we used the Animator ID of the sniper, a value of 8.

On the sniper rifle’s Item2.
component set the Full Screen UI ID to the same ID value that was used in step 1.

| 205

When the Show Full Screen UI toggle is enabled the Full Screen UI Monitor3.
component will activate. This can be set using the state system so when the Aim ability
is activated it enables the toggle.
If you are adding a sniper ensure you have added a view type state that changes the4.
camera state (such as offset or field of view) when the sniper aims. In the demo scene
this state is called AimSniperRifle.

Impact Callback

When the hitscan or projectile collides with another object the “OnObjectImpact” event will
be sent from the built-in Event System. A corresponding Unity event will also be sent. This
event allows you to add new functionality when the impact occurs without having to change
the class at all. The following example will subscribe to this event from a new component:

using UnityEngine;
using Opsive.Shared.Events;

public class MyObject : MonoBehaviour
{
 /// <summary>
 /// Initialize the default values.
 /// </summary>
 public void Awake()
 {
 EventHandler.RegisterEvent<float, Vector3, Vector3,
GameObject, object, Collider>(gameObject, "OnObjectImpact", OnImpact);
 }

 /// <summary>
 /// The object has been impacted with another object.
 /// </summary>
 /// <param name="amount">The amount of damage taken.</param>
 /// <param name="position">The position of the damage.</param>
 /// <param name="forceDirection">The direction that the object
took damage from.</param>
 /// <param name="attacker">The GameObject that did the
damage.</param>
 /// <param name="attackerObject">The object that did the
damage.</param>
 /// <param name="hitCollider">The Collider that was hit.</param>
 private void OnImpact(float amount, Vector3 position, Vector3
forceDirection, GameObject attacker, object attackerObject, Collider
hitCollider)
 {
 Debug.Log(name + " impacted by " + attacker + " on collider "
+ hitCollider + ".");
 }

 /// <summary>

https://opsive.com/support/documentation/ultimate-character-controller/state-system/
https://69.16.254.154/support/documentation/ultimate-character-controller/programming-concepts/events/
https://unity3d.com/learn/tutorials/topics/scripting/events

| 206

 /// The GameObject has been destroyed.
 /// </summary>
 public void OnDestroy()
 {
 EventHandler.UnregisterEvent<float, Vector3, Vector3,
GameObject, object, Collider>(gameObject, "OnObjectImpact", OnImpact);
 }
}

Inspected Fields

Consumable ItemDefinition

The Item Definition that is consumed by the item. If this is null the weapon will have
unlimited ammo.

Fire Mode

The mode in which the weapon fires multiple shots.

SemiAuto: Fire discrete shots, don’t continue to fire until the player fires again.
FullAuto: Keep firing until the ammo runs out or the player stops firing.
Burst: Keep firing until the burst rate is zero.

Fire Type

Specifies when the weapon should be fired.

Instant: Fire the shot immediately.
ChargeAndFire: Wait for the Used callback and then fire.
ChargeAndHold: Fire as soon as the Use button is released.

Min Charge Length

If using a charge FireType, the minimum amount of time that the weapon must be charged
for in order to be fired.

Full Charge Length

If using a charge FireType, the amount of time that the weapon must be charged for in
order to be fully fired.”

Charge Item Substate Parameter Value

The Item Substate parameter value when charging.

Min Charge Strength

If using a charge FireType, the minimum amount strength that the weapon will use if it isn’t
fully charged.

| 207

Charge Audio Clip Set

A set of AudioClips that can be played when the weapon is charging.

Fire Count

The number of rounds to fire in a single shot.

Burst Count

If using the Burst FireMode, specifies the number of bursts the weapon can fire.

Burst Delay

If using the Burst FireMode, specifies the delay before the next burst can occur.

Spread

The random spread of the bullets once they are fired.

Fire In Look Source Direction

Should the weapon fire in the LookSource direction? If false the weapon will be fired in the
direction of the weapon.

Projectile

Optionally specify a projectile that the weapon should use. If no projectile is specified then
the weapon will fire a raycast in order to determine if it hit any objects.

Projectile Fire Velocity Magnitude

The magnitude of the projectile velocity when fired. The direction is determined by the fire
direction.

Projectile Visibility

Specifies when the projectile should become visible.

OnFire: The projectile is only visible when the weapon is being fired.
OnAim: The projectile is visible when the character is aiming.
Always: The projectile is always visible when the item is equipped.

Projectile Start Layer

The layer that the projectile should occupy when initially spawned.

Projectile Fired Layer

The layer that the projectile object should change to after being fired.

| 208

Layer Change Delay

The amount of time after the object has been fired to change the layer.

Projectile Enable Delay After Other Use

The amount of time after another item has been used that the projectile should be enabled
again.

Dry Fire Item Substate Parameter Value

The Item Substate parameter value when the weapon tries to fire but is out of ammo.

Dry Fire Audio Clip Set

A set of AudioClips that can be played when the weapon is out of ammo.

Hitscan Fire Delay

The delay until the hitscan is performed after being fired. Set to 0 to fire immediately.

Hitscan Fire Range

The maximum distance in which the hitscan fire can reach.

Max Hitscan Collision Count

The maximum number of objects the hitscan cast can collide with.

Impact Layers

A LayerMask of the layers that can be hit when fired at.

Hitscan Trigger Interaction

Specifies if the hitscan can detect triggers.

Damage Amount

The amount of damage to apply to the hit object.

Impact Force

The amount of much force to apply to the hit object.

Impact Force Frames

The number of frames to add the impact force to.

| 209

Impact State Name

The name of the state to activate upon impact.

Impact State Disable Timer

The number of seconds until the impact state is disabled. A value of -1 will require the state
to be disabled manually.

Surface Impact

The Surface Impact triggered when the weapon hits an object.

Clip Size

The number of rounds in the clip.

Auto Reload

Specifies when the item should be automatically reloaded.

Reload Type

Specifies how the clip should be reloaded.

Full: Reload the entire clip.
Single: Reload a single bullet.

Reload Can Camera Zoom

Can the camera zoom during a reload?

Reload Crosshairs Spread

Should the crosshairs spread during a recoil?

Reload Animator Audio State Set

Specifies the animator and audio state from a reload.

Reload Event

Specifies if the item should wait for the OnAnimatorItemReload animation event or wait for
the specified duration before reloading.

Reload Complete Event

Specifies if the item should wait for the OnAnimatorItemReloadComplete animation event or
wait for the specified duration before completing the reload.

| 210

Reload Complete Audio Clip Set

The clip that should be played after the item has finished reloading.

Reload Detach Attach Clip

Should the weapon clip be detached and attached when reloaded?

Reload Detach Event

Specifies if the item should wait for the OnAnimatorItemReloadDetachClip animation event
or wait for the specified duration before detaching the clip from the weapon.

Reload Show Projectile Event

Specifies if the item should wait for the OnAnimatorItemReloadShowProjectile animation
event or wait for the specified duration before showing the projectile.

Reload Attach Projectile Event

Specifies if the item should wait for the OnAnimatorItemReloadAttachProjectile animation
event or wait for the specified duration before parenting the projectile to the fire point.

Reload Drop Clip

The prefab that is dropped when the character is reloading.

Reload Clip Layer Change Delay

The amount of time after the clip has been removed to change the layer.

Reload Clip Target Layer

The layer that the clip object should change to after being reloaded.

Reload Drop Clip Event

Specifies if the item should wait for the OnAnimatorItemReloadDropClip animation event or
wait for the specified duration before dropping the clip from the weapon.

Reload Attach Event

Specifies if the item should wait for the OnAnimatorItemReloadAttachClip animation event
or wait for the specified duration before attaching the clip back to the weapon.

Position Recoil

The amount of positional recoil to add to the item.

| 211

Rotation Recoil

The amount of rotational recoil to add to the item.

Position Camera Recoil

The amount of positional recoil to add to the camera.

Rotation Camera Recoil

The amount of rotational recoil to add to the camera.

Camera Recoil Accumulation

The percent of the recoil to accumulate to the camera’s rest value.

Localize Recoil Force

Is the recoil force localized to the direct parent?

Muzzle Flash

A reference to the muzzle flash prefab.

Pool Muzzle Flash

Should the muzzle flash be pooled? If false a single muzzle flash object will be used.

Shell

A reference to the shell prefab.

Shell Velocity

The velocity that the shell should eject at.

Shell Torque

The torque that the projectile should initialize with.

Shell Eject Delay

Eject the shell after the specified delay.

Smoke

A reference to the smoke prefab.

Smoke Spawn Delay

Spawn the smoke after the specified delay.

| 212

Tracer

Optionally specify a tracer that should should appear when the hitscan weapon is fired.

Tracer Spawn Delay

Spawn the tracer after the specified delay.

Disable Scope Camera On No Aim

Should the camera’s scope camera be disabled when the character isn’t aiming?

On Hitscan Impact Event

Unity event invoked when the hitscan hits another object.

Throwable Item
The Throwable Item Item Action allows the character to throw an object such as a grenade
or baseball. The Grenade Item is a subclass that allows the pin from a grenade to be
removed before the object is thrown.

The GameObject that the Throwable Item attaches to is not the actual object that is thrown
– the Thrown Object field specifies the object that should actually be thrown instead. The
Throwable Item also allows the character to show a trajectory of the path that the object
will follow when it is thrown. The First/Third Person Throwable Weapon Properties
component will also be attached to the item and this component contains the properties that
are specific for that perspective.

Inspected Fields

Thrown Object

The object that is thrown.

Disable Visible Object

Should the visible object be disabled?

Activate Throwable Object Event

Specifies if the item should wait for the OnAnimatorActivateThrowableObject animation
event or wait for the specified duration before activating the throwable object.

Throw On Stop Use

Should the object be thrown when the stop use method is called?

https://opsive.com/support/documentation/ultimate-character-controller/items/actions/usable/throwable-item/grenade-item/
https://opsive.com/support/documentation/ultimate-character-controller/objects/trajectory-object/

| 213

Velocity

The starting velocity of the thrown object.

Start Layer

The layer that the item should occupy when initially spawned.

Thrown Layer

The layer that the thrown object should change to after being thrown.

Layer Change Delay

The amount of time after the object has been thrown to change the layer.

Damage Amount

The amount of damage applied to the object hit by the thrown object.

Impact Layers

The layers that the thrown object can collide with.

Surface Impact

The Surface Impact triggered when the object hits another object.

Impact Force

The amount of force to apply to the object hit.

Impact Force Frames

The number of frames to add the impact force to.

Impact State Name

The name of the state to activate upon impact.

Impact State Disable Timer

The number of seconds until the impact state is disabled. A value of -1 will require the state
to be disabled manually.

Infinite Use

Should the throwable item be able to be used no matter the inventory count?

| 214

Reequip Event

Specifies if the item should wait for the OnAnimatorReequipThrowableItem animation event
or wait for the specified duration before requipping.

Reequip Item Substate Parameter Value

The value of the Item Substate Animator parameter when the item is being reequipped.

Show Trajectory On Aim

Should the item’s trajectory be shown when the character aims?”

Trajectory Offset

The offset of the trajectory visualization relative to the trajectory transform set on the
Throwable Item Properties.

Grenade Item
The Grenade Item extends the Throwable Item to allow a pin to be removed just before the
object is thrown. The grenade will also start to cook when the item is used, allowing for the
grenade to explode while still in the character’s hand if they don’t throw it fast enough.

Inspected Fields

Animate Pin Removal

Is the pin removal animated?

Remove Pin Event

Specifies if the item should wait for the OnAnimatorItemRemovePin animation event or wait
for the specified duration before removing the pin from the object?

Shield
The Shield Item Action will protect the character from taking damage. The shield can be
invincible or slowly degrade as it takes more and more damage. The area that will protect
the character from damage is defined by the collider that is attached to the first or third
person shield object.

Inspected Fields

Require Aim

Does the shield only protect the player when the character is aiming?

| 215

Absorption Factor

Determines how much damage the shield absorbs. A value of 1 will absorb all of the
damage, a value of 0 will not absorb any of the damage.

Absorb Explosions

Should the shield absorb damage caused by explosions?

Apply Impact

Should an impact be applied when the weapon is hit by another object?

Impact Animator Audio State Set

Specifies the animator and audio state for when the shield is impacted by another object.

Impact Complete Event

Specifies if the item should wait for the OnAnimatorItemImpactComplete animation event or
wait for the specified duration before completing the impact.

Durability Attribute Name

The name of the shield’s durability attribute. When the durability reaches 0 the shield will
not absorb any damage.

Drop When Durability Depleted

Should the item be dropped from the character when the durability is depleted?

Dual Wielding
The inventory and item system allows for multiple items to be equipped at the same time. As
each item is equipped they will occupy a slot within the inventory. Because there isn’t a
limit to the number of slots that a single character can have there isn’t a limit to the number
of items that can be equipped at the same time. In most cases the most number of items that
a character will have equipped at any one time is two so this page will setup that scenario.

For this example we are going to setup a Sword and Shield that you can dual wield. The
initial item setup is the same as a single-wield item. Both items should first be created with
the Item Manager. The Sword should specify a Slot ID of 0 (for the right hand) within the
Item component, and the shield should specify a Slot ID of 1 (for the left hand).

Once both items have been created a new Item Set can be created that uses both items:

https://opsive.com/support/documentation/ultimate-character-controller/editors/item/
https://opsive.com/support/documentation/ultimate-character-controller/inventory/item-sets/

| 216

When the Item Set is active the Equip Unequip ability will try to equip the Sword in Slot 0
and the Shield in Slot 1. In most cases this is all that you need to do, however for the first
person perspective you have some additional options based on which parent Object you are
using.

For the first person perspective all of your items can share the Object within the First
Person Perspective Item component. If however your item can be equipped with other items
it is useful to have the item use its own object so each hand can operate independently. This
was the approach that we took for the Sword Shield setup. If you look at the First Person
Objects hierarchy you’ll see that the Shield is parented to just the Left Arms:

When the Shield is equipped the NolanFirstPersonLeftArms object will activate and be
controlled by the shield’s First Person Perspective Item component. This allows the right
arms to operate independently.

Runtime Pickup

There are two ways an item can be added to the character through the Item Manager:

Create the item with the Item Manager and assign the item to the character. This is1.
the most common method and it requires all possible items to be added to the
character at edit time.
Create the item with the Item Manager and don’t assign the item to a character,2.
resulting in a prefab of the item. This method is extremely useful for RPGs where there
are many items to configure.

This page will walk through the second method. This page is split up into two sections, one
for first person items and the other for third person items. If you are using both
perspectives then both a first and third person item should be created in step 1.

First Person Perspective

Open the Item Manager. Specify the following fields:1.
Name: The name of the item.

https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/item-abilities/item-set/equip-unequip/
https://opsive.com/support/documentation/ultimate-character-controller/editors/items/

| 217

Item Definition: The Item Definition that provides a unique id for the item.
Slot ID: The slot that the item will occupy.
Animator Item ID: Optional, the Item ID used within the Animator.
Add First Person Item: True.
First Person Base: Optional, the arm object that the item should be parented to.
If this field is left blank (which is the most common) then the item will search for
the parent based off of the FirstPersonBaseObject component ID.
First Person Visible Item: The object rendered within the game.
First Person Visible Item Animator Controller: Optional, the Animator Controller
for the First Person Visible Item.
Action Type: The type of Item Action to add to the item.

The following screenshot provides a sample setup:

Build the item to a new prefab. Select that prefab within the project.2.
Because we left the First Person Base field blank we need to specify which object the3.
Visible Item will be parented to. We are going to specify a value of 0 for the First
Person Base Base field of the First Person Perspective Item component because we
want to use the first person arms that are already created under the First Person
Objects GameObject:

The spawn position/rotation now needs to be specified. The best method for4.

| 218

determining this value is to pickup the item with the Item Pickup component and then
adjust the visible item’s transform while in play mode. Save the position/rotation
values and then copy them to the Local Spawn Position, Local Spawn Rotation,
and Local Spawn Scale fields:

Your item has now been setup to be picked up at runtime. This prefab should now be5.
specified within an Item Pickup GameObject so the item can actually be picked up.

Third Person Perspective

Open the Item Manager. Specify the following fields:1.
Name: The name of the item.
Item Definition: The Item Definition that provides a unique id for the item.
Slot ID: The slot that the item will occupy.
Animator Item ID: Optional, the Item ID used within the Animator.
Add Third Person Item: True.
Third Person Object: The object rendered within the game.
Action Type: The type of Item Action to add to the item.

The following screenshot provides a sample setup:

Build the item to a new prefab. Select that prefab within the project.2.
The spawn position/rotation now needs to be specified. The best method for3.
determining this value is to pickup the item with the Item Pickup component and then

https://opsive.com/support/documentation/ultimate-character-controller/objects/item-pickup/

| 219

adjust the visible item’s transform while in play mode. Save the position/rotation
values and then copy them to the Local Spawn Position, Local Spawn Rotation,
and Local Spawn Scale fields:

Your item has now been setup to be picked up at runtime. This prefab should now be4.
specified within an Item Pickup GameObject so the item can actually be picked up.

Referencing Character Objects

When the item is spawned at runtime it isn’t able to reference the same objects that an item
created at design time can. For example, the Shootable Weapon component can use the
character’s hand to hold the reloadable clip. When the item is attached to the character at
design time the hand can be specified directly on the Shootable Weapon Properties:

With runtime pickups this hand is no longer accessible so the Reloadable Clip Attachment
ID field must be specified. This ID maps to the ID for the Object Identifier component. In
this same scenario let’s now specify an ID of 1 on the properties component:

The Object Identifier should then be added to the character’s GameObject that the
Reloadable Clip Attachment should reference:

Melee Weapons can also assign their hitbox colliders at runtime. On the Melee Weapon
Properties component if no Collider is specified the Collider Object ID field will appear
which will search for the Object Identifier ID.

https://opsive.com/support/documentation/ultimate-character-controller/objects/item-pickup/

| 220

Animator Audio State Set
When your item is being used you may not always want the same animation to play. As an
example you may want your sword to first slash from the right and then slash from the left.
This can be setup using the Animator Audio State Set. Consider the following example:

In this example the item has two different Animator Audio States. The selected state has an
Item Substate Index of 1 and three audio clips. When this state is triggered it will change
the Animator’s Item Substate Index value to 1 and randomly choose one of the audio clips.
When the next state is called it’ll move onto the second state in the list. This can be changed
by adjusting the Selector popup that is above the Animator Audio States reorderable list.

The selector popup is a powerful feature which allows the state to be selected based on the
current game state. The following selector classes are included:

Matching Recoil: Selects the same state index as what was retrieved by the Use
Animator Animator State Selector
Random: Selects the next state randomly.
Random Recoil: Selects the next state randomly for a recoil.
Sequence: Will select the next state sequentially.
Sequence Recoil: Selects the next state sequentially for a recoil.

When the selector is determining what state can be selected it will first ensure that the
possible state can be selected. Cases when it may not be able to be selected are if Allow
During Movement is false but the character is moving or Require Grounded is true but the
character is not grounded. When the state is selected the state with the specified State
Name will activate allowing for states to change the character’s state. An example use may
be that when the state at index 2 plays the melee weapon should cause more damage
because it is a heavy attack.

| 221

API

You can also create your own selection objects by extending the Animator Audio State
Selector object. The Animator Audio State Selector has the following API:

/// <summary>
/// Initializes the selector.
/// </summary>
/// <param name="gameObject">The GameObject that the state belongs
to.</param>
/// <param name="characterLocomotion">The character that the state
bleongs to.</param>
/// <param name="item">The item that the state belongs to.</param>
/// <param name="states">The states which are being selected.</param>
public virtual void Initialize(GameObject gameObject,
UltimateCharacterLocomotion characterLocomotion, Item item,
AnimatorAudioStateSet.AnimatorAudioState[] states);

/// <summary>
/// Starts or stops the state selection. Will activate or deactivate
the state with the name specified within the AnimatorAudioState.
/// </summary>
/// <param name="start">Is the object starting?</param>
public virtual void StartStopStateSelection(bool start)

/// <summary>
/// Returns the current state index. -1 indicates this index is not
set by the class.
/// </summary>
/// <returns>The current state index.</returns>
public virtual int GetStateIndex()

/// <summary>
/// Moves to the next state.
/// </summary>
public virtual void NextState()

/// <summary>
/// Returns an additional value that should be added to the Item
Substate Index.
/// </summary>
/// <returns>An additional value that should be added to the Item
Substate Index.</returns>
public virtual int GetAdditionalItemSubstateIndex()

/// <summary>
/// The object has been destroyed.
/// </summary>
public virtual void OnDestroy();

| 222

Inventory
The focus of the Ultimate Character Controller is to be an exceptional character controller
so the inventory system is less focused on features and more focused on being flexible. With
that said, in order to have a functioning item system the inventory system does need to be
able to support the basics such as keeping an ammo count or determining if the character
has a weapon.

The inventory uses Item Definitions to identify a particular item. Item Definitions are also
used for consumables such as assault rifle bullets or amount of battery left. The built-in
inventory class uses a concept of Item Types, which are a subclass of Item Definitions. You’ll
also see Item Identifiers within the asset and these are a reference to the specific item
instance. This distinction is made to allow for easier integration with our inventory solution
asset. Item Types are used within the character controller and are both Item Definitions and
Item Identifiers.Item Types can be created within the Item Type Manager.

Pickup Script

The script below will add a new ItemType to the inventory:

using UnityEngine;
using Opsive.UltimateCharacterController.Inventory;

/// <summary>
/// Picks up the specified ItemType within the Start method.
/// </summary>
public class Pickup : MonoBehaviour
{
 [Tooltip("The character that should pickup the item.")]
 [SerializeField] protected GameObject m_Character;
 [Tooltip("The ItemType that the character should pickup.")]
 [SerializeField] protected ItemType m_ItemType;
 [Tooltip("The number of ItemType that the character should
pickup.")]
 [SerializeField] protected int m_Amount= 1;

 /// <summary>
 /// Picks up the ItemType.
 /// </summary>
 public void Start()
 {
 var inventory = m_Character.GetComponent<InventoryBase>();
 if (inventory == null) {
 return;
 }

 // Adds the specified amount of the ItemType to the inventory.
 // m_ItemType: The ItemType to pick up.
 // m_Amount: The amount of ItemType to pick up.

https://opsive.com/support/documentation/ultimate-character-controller/editors/item-types/

| 223

 // -1: The slot ID that picked up the item. A -1 value will
indicate no specified slot.
 // true: Should the item be picked up immediately? If false
the EquipUnequip ability may not switch to the newly picked up item.
 // false: Should the item be force equipped?
 inventory.Pickup(m_ItemType, m_Amount, -1, true, false);
 }
}

Equip ItemSet Script

The script below will equip a specific ItemSet from the ItemSetManager. The item must first
be picked up before it can be equipped.

using UnityEngine;
using Opsive.UltimateCharacterController.Character;
using Opsive.UltimateCharacterController.Character.Abilities.Items;

/// <summary>
/// Equips the specified ItemSet within the Start method.
/// </summary>
public class Equip : MonoBehaviour
{
 [Tooltip("The character that should drop the item.")]
 [SerializeField] protected GameObject m_Character;
 [Tooltip("The index of the category that the ItemSet belongs
to.")]
 [SerializeField] protected int m_CategoryIndex;
 [Tooltip("The index of the ItemSet that should be equipped.")]
 [SerializeField] protected int m_ItemSetIndex;

 /// <summary>
 /// Equips the ItemSet.
 /// </summary>
 public void Start()
 {
 var characterLocomotion =
m_Character.GetComponent<UltimateCharacterLocomotion>();
 var equipUnequipAbilities =
characterLocomotion.GetAbilities<EquipUnequip>();
 for (int i = 0; i < equipUnequipAbilities.Length; ++i) {
 if (equipUnequipAbilities[i].ItemSetCategoryIndex ==
m_CategoryIndex) {
 // Starts equipping to the specified ItemSet.
 // ItemSetIndex: The ItemSet to equip/unequip the
items to.
 // ForceEquipUnequip: Should the ability be force
started? This will stop all abilities that would prevent EquipUnequip
from starting.

https://opsive.com/support/documentation/ultimate-character-controller/inventory/item-sets/

| 224

 // ImmediateEquipUnequip: Should the items be equipped
or unequipped immediately?
equipUnequipAbilities[i].StartEquipUnequip(m_ItemSetIndex, true,
false);
 return;
 }
 }
 }
}

Drop Script

The script below will drop an ItemType from the inventory:

using UnityEngine;
using Opsive.UltimateCharacterController.Inventory;

/// <summary>
/// Drops the specified ItemType within the Start method.
/// </summary>
public class Drop: MonoBehaviour
{
 [Tooltip("The character that should drop the item.")]
 [SerializeField] protected GameObject m_Character;
 [Tooltip("The ItemType that the character should drop.")]
 [SerializeField] protected ItemType m_ItemType;

 /// <summary>
 /// Drops the ItemType.
 /// </summary>
 public void Start()
 {
 var inventory = m_Character.GetComponent<InventoryBase>();
 if (inventory == null) {
 return;
 }

 // A single ItemType can exist in multiple slots. Drop all of
the items.
 for (int i = 0; i < inventory.SlotCount; ++i) {
 var item = inventory.GetItem(m_ItemType, i);
 if (item != null) {
 // Removes the item from the inventory. The last
parameter drops the item.
 // ItemType: The ItemType to remove.
 // SlotID: The ID of the slot.
 // amount: The amount of the ItemIdentnfier that
should be removed.
 // Drop: Should the item be dropped when removed?

| 225

 inventory.RemoveItem(m_ItemType, i, 1, true);
 }
 }
 }
}

Item Amounts

The total amount of ammo the active item has can be determined with the following script:

using UnityEngine;
using Opsive.UltimateCharacterController.Inventory;
using Opsive.UltimateCharacterController.Items.Actions;

/// <summary>
/// Outputs the amount of ammo the active item has.
/// </summary>
public class OutputItemAmount : MonoBehaviour
{
 [Tooltip("The character that contains the inventory.")]
 [SerializeField] protected GameObject m_Character;

 /// <summary>
 /// Outputs the item amount.
 /// </summary>
 public void Start()
 {
 var inventory = m_Character.GetComponent<InventoryBase>();
 if (inventory == null) {
 return;
 }

 for (int i = 0; i < inventory.SlotCount; ++i) {
 var item = inventory.GetActiveItem(i);
 if (item != null) {
 Debug.Log("Inventory Amount: " +
inventory.GetItemIdentifierAmount(item.ItemIdentifier));
 // A single item can have multiple Item Actions.
 var itemActions = item.ItemActions;
 for (int j = 0; j < itemActions.Length; ++j) {
 var usableItem = itemActions[j] as IUsableItem;
 if (usableItem != null) {
 var consumableItemIdentifier =
usableItem.GetConsumableItemIdentifier();
 if (consumableItemIdentifier != null) {
 // The loaded amount is retrived from the
UsableItem and hte unloaded amount is retrieved from the inventory.
 Debug.Log("Consuambe Loaded Amount: " +
usableItem.GetConsumableItemIdentifierAmount());

| 226

 Debug.Log("Consuambe Inventory Amount: " +
inventory.GetItemIdentifierAmount(consumableItemIdentifier));
 }
 }
 }
 }
 }
 }
}

Inspected Fields

Current Inventory

The Current Inventory foldout will list every item that is currently in the inventory. This list
will only be populated when the game is running. This list is purely for informational
purposes as the list cannot be edited.

Default Loadout

The character will spawn with any items specified within the Default Loadout. New
ItemTypes can be added and removed by selecting the plus or minus icon on the bottom
right of the list.

Remove All on Death

Should all of the items be removed when the character dies?

Load Default Loadout on Respawn

Should the inventory load the Default Loadout after the character has respawned?

API

Most for the operations performed directly on the inventory will be to react to an event sent
by the inventory rather than performing an operation on the inventory. The inventory
exposes many events using the built in Event System:

// Called when the item is initially added to the inventory (ex. an
assault rifle has been added to the character at edit time).
OnInventoryAddItem(Item item)

// Called when an ItemIdentifier is picked up (ex. the character finds
an assault rifle on the ground and picks it up).
OnInventoryPickupItemIdentifier(IItemIdentifier itemIdentifier, int
amount, bool immediatePickup, bool forceEquip)

// Called when an Item is picked up. This event is similar to
OnInventoryPickupItemIdentifier except it is only called for
ItemIdentifiers that have an item attached to them.

https://opsive.com/support/documentation/ultimate-character-controller/programming-concepts/events/

| 227

OnInventoryPickupItem(Item item, int count, bool immediatePickup, bool
forceEquip)

// Called when the item is equipped (ex. the event is called for the
assault rifle when switching from a knife to an assault rifle).
OnInventoryEquipItem(Item item, int slotID)

// Called when the ItemIdentifier amount is changed (ex. the event is
called when an assault rifle being fired).
OnInventoryAdjustItemIdentifierAmount(IItemIdentifier itemIdentifier,
int remaining)

// Called when the item is unequipped (ex. the event is called on the
assault rifle when switching from an assault rifle to a knife).
OnInventoryUnequipItem(Item item, int slotID)

// Called when the item is removed from the inventory (ex. the event
is called when the character dies and drops all of their items).
OnInventoryRemoveItem(Item item, int slotID)

Corresponding Unity events exist for each of these events. The following code can be used
as an example for subscribing to one of these events using the built in event system:

using UnityEngine;
using Opsive.Shared.Inventory;
using Opsive.Shared.Events;

public class MyObject : MonoBehaviour
{
 public void Awake()
 {
 EventHandler.RegisterEvent<IItemIdentifier, int>(gameObject,
"OnInventoryAdjustItemIdentifierAmount",
OnAdjustItemIdentifierAmount);
 }

 /// <summary>
 /// The specified ItemIdentifier has changed values.
 /// </summary>
 /// <param name="itemIdentifier">The ItemIdentifier that has been
used.</param>
 /// <param name="remaining">The remaining amount of the specified
ItemIdentifier.</param>
 private void OnInventoryAdjustItemIdentifierAmount(IItemIdentifier
itemIdentifier, int remaining)
 {
 Debug.Log("The inventory used " + itemIdentifier + ", " +
remaining + " is remaining.");
 }

https://unity3d.com/learn/tutorials/topics/scripting/events

| 228

 public void OnDestroy()
 {
 EventHandler. UnregisterEvent <IItemIdentifier,
int>(gameObject, "OnInventoryAdjustItemIdentifierAmount",
OnAdjustItemIdentifierAmount);
 }
}

Item Types
An Item Type is a ScriptableObject representing an Item. Each Item must have an Item Type
and Item Types are required so the character knows which item to interact with (pickup,
equip, use, etc). New Item Types can be created through the Item Type Manager. Item
Types are primarily used by the Inventory, Item Set Manager, and Item Pickup components.

Item Sets
Item Sets represent a set of Item Definitions that can be equipped at the same time. The
Item Set Manager is the component responsible for switching which Item Sets are active.
When a new item is added to the character an Item Set will automatically be created with
that Item Definition if it isn’t already created. More than one Item Sets can be active at the
same type through the Categories defined within the Item Collection.

Scenarios

Single Category Setup

In this scenario the character will always have a max of one item equipped at a time. While
this is the most basic setup of the Item Set Manager it will also be the most common. In a
lot of the cases each item will occupy the same slot (such as the right hand slot) but this is
not a restriction.

https://opsive.com/support/documentation/ultimate-character-controller/items/
https://opsive.com/support/documentation/ultimate-character-controller/editors/item-types/
https://opsive.com/support/documentation/ultimate-character-controller/editors/item-types/

| 229

When the game starts the Item Set 0 will first be equipped (assuming the slot is valid – in
this scenario the slot will be valid if the character has the pistol). When the Equip Next
ability is activated the Item Set at index 1 will be activated, which contains the assault rifle.
Since the Item Set 1 specifies the assault rifle for slot 0 the pistol will be unequipped. The
sword will then be activated after the assault rifle. If the Equip Next is triggered again after
Item Set 2 the Item Set Manager will then skip back to the beginning, Item Set 0. This is
because Item Set 3 has the Can Switch To field deselected:

The Can Switch To field indicates whether or not the abilities can switch to the specified
Item Set. If the abilities cannot switch to the Item Set then the only way for the Item Set to
be activated is it is the Default Item Set or if a state activates it via the Disabled Index. In
this scenario the Item Set 3 is the Default Item Set so when the Toggle Equip ability is
activated then the Item Set 3 will be activated. By setting up the Item Set this way it
prevents the character from switching to the body Item Set unless no item should be
equipped. When the body Item Set is the default Item Set it will allow the character to
punch and kick when no item is equipped.

The Item Set doesn’t have to contain an Item Definition – if both Slot 0 and 1 had no Item
Definitions set then when the Item Set is activated the character wouldn’t be able to punch
or kick.

https://opsive.com/support/documentation/ultimate-character-controller/character/item-abilities/item-set/equip-next/
https://opsive.com/support/documentation/ultimate-character-controller/character/item-abilities/item-set/toggle-equip/

| 230

Dual Wield Single Category Setup

This scenario will extend upon the previous scenario by allowing the character to dual wield
two pistols and a sword with a shield. No new categories need to be added as the dual wield
items can only be equipped with a single Item Definition. In this scenario the Weapons
category looks like:

When the game starts it will first try to activate Item Set 0. If the character does not have 2
pistols then Item Set 0 will not be able to be activated and the next slot will be tested.
Assuming the character does have 2 pistols in the inventory then Item Set 0 will activate.
Slot 0 corresponds to the right hand and slot 1 corresponds to the left hand. This will allow
two pistols to be equipped at the same time (assuming the pistols are setup to work
together).

When the next Item Set is activated it will activate the Item Set 1 which only contains the
assault rifle in the right hand. There is no Item Definition specified for slot 1 so the left
pistol will be unequipped. The next Item Set only contains the sword which will unequip the
assault rifle. Item Set 3 contains a sword and shield combo. Slot 1 will equip the shield and
because slot 0 contains the same Item Definition as what was in Item Set 2 the slot will not
change.

Double Category Setup

The goal of this scenario is to have a primary weapon but also allow a grenade to be thrown
at any time. One way to do this would be to have the grenade act as a dual wield item
similar to the last scenario, but in this case we don’t want the Item Set to be dependent on
the number of grenades the character has so a second category should be created. The
Weapons category within the Item Set Manager should look the same as it did within the
Single Category scenario, and the following category and Item Set should be added:

https://opsive.com/support/documentation/ultimate-character-controller/items/dual-wielding/
https://opsive.com/support/documentation/ultimate-character-controller/items/dual-wielding/

| 231

This new category has the frag grenade being equipped within slot 1, the left hand. If you
take a look at the Single Category scenario you’ll see that no Item Definitions occupy slot 1
within the Weapons category so there are no conflicts. If the character has a grenade the
Item Set 0 will be activated and they can throw the grenade with the left hand at any time.

When the body Item Set from the Weapons category is activated we don’t want the
character to be able to throw a grenade. We can prevent this from happening by first setting
a state name when the body Item Set is activated:

When the Body state is activated the Item Set 0 from the Grenades category should disable
itself by setting the Enabled property to false within the state system.

https://opsive.com/support/documentation/ultimate-character-controller/state-system/

| 232

With this setup the Body state will be activated when the body Item Set is activated within
the Weapons category and the state will disable the Enabled property within the Item Set.
When the Item Set is disabled it will switch to the Item Set 1 because that Item Set
is Enabled when the Body state is active:

Notice that the Disabled Index is set to 0 which means that when the Item Set is deactivated

| 233

(the Body state is deactivated) the Item Set will disable and switch to the index specified,
which is Item Set 0.

Triple Category Setup

The Ultimate Character Controller uses a triple category setup. This setup allows the
grenade to be equipped as a primary item with the right hand or thrown from either hand as
a secondary item. In most cases the grenade will be thrown from the left hand as a
secondary item (such as when the character has an assault rifle or sword equipped) but the
bow occupies the left hand so the grenade needs to be able to be thrown from the right
hand as well.

To get started ensure the Left Hand Secondary Grenades and Right Hand Secondary
Grenades categories are created and then add a Frag Grenade Item Definition to the
Weapons Item Set. To demonstrate the secondary grenade switching slots the Bow Item
Definition has also been added to the Weapons category:

The Frag Grenade Item Definition should be added to the Left Hand Secondary Grenades
Category along with an empty Item Set:

| 234

Finally the Frag Grenade Item Definition should be added to the Right Hand Secondary
Grenades Category along with an empty Item Set:

The basic setup is now complete and the Item Definitions need to be setup, similar to how
the Item Definitions were setup in the Double Category scenario. In order for the Left and
Right Hand categories to know that they need to do something different from the default
frag grenade Item Definition (at index 3) should activate the PrimaryFragGrenade state.
Similarly, the bow Item Definition (at Item Set 4) should activate the Bow state.

Looking at the Left Hand Secondary Grenades category first, by default the Item Set 0
should be enabled since this Item Set will be activated most of the time. When the
PrimaryFragGrenade or Bow (or Body) state is activated this Item Set should deactivate so
Item Set 1 can activate. This will prevent the Frag Grenade from being equipped in slot 1
when another item is activated in slot 1:

| 235

Item Set 1 starts off disabled and will be enabled when the PrimaryFragGrenade, Bow, or
Body states are active. When the state is disabled again (meaning none of those states are
active) then the category will switch to the Disabled Index which is Item Set 0. This is how
Item Set 0 reactivates again.

The Right Hand Secondary Grenades Category is almost the reverse of the Left Hand
Secondary Grenades Category. Item Set 0, which contains the Frag Grenade Item
Definition, should only be activated when the bow is activated. This allows the grenade to
still be thrown when the bow is equipped even though the bow occupies slot 1. The Item Set
still disables itself when the Body state is activated because no Item Sets should be enabled
at that time.

Item Set 1 of the Right Hand Secondary Grenades Category is similar to Item Set 1 of the
Left Hand Secondary Grenades Category except it doesn’t contain as many states because
this Item Set is only activated when the bow is equipped.

| 236

Sword and Shield Category Setup

You may be working on an RPG which has hundreds of swords or shields and they can all be
dual wielded together. Having a single category with every possible combination would not
be feasible. For this case you can create two categories: Left Hand Items and Right Hand
Items. All of the swords can be equipped in the right hand (slot 0) and all of the shields can
be equipped in the left hand (slot 1). With this setup any shield can be equipped with any
sword. Here’s an outline of what the Right Hand Item Category would look like:

The Left Hand Category would then contain all of the shields:

| 237

Inspected Fields

State

The state name that should be enabled when the ItemSet is active. This is extremely useful
in the case where you want to enable or disable certain properties when a particular item is
equipped.

Slot

The Item Definition for the specified slot index. These slots match up to the same slots that
are specified by the ItemSlot component.

Default

Is the ItemSet the default ItemSet? Default ItemSets will be activated when the Toggle
Equip ability is activated or a particular ItemSet has been disabled. Only one Default
ItemSet is valid per category.

Enabled

Is the ItemSet enabled? A disabled ItemSet cannot be activated through the EquipUnequip
ability.

Can Switch To

Can the ItemSet be switched to by the EquipNext/EquipPrevious abilities?

Disabled Index

Specifies the ItemSet index that should be activated if the current ItemSet is disabled while
being active.

| 238

Slots
When the Item Set Manager determines if a particular item can be equipped it does so
based off of the slot system. Think of slots like an array element within the inventory. Only
one item can occupy each slot, and that item has to be unique so the inventory knows which
item should be equipped. From the animator’s perspective that unique item is represented
by the animator ID.

Consider the example where you want to have dual pistols equipped. In the animator the
pistol items are represented by the unique animator ID of 2, but because you can have
multiple pistols they should each occupy a slot within the inventory. When both pistols are
equipped the animator will contain the following values:

Slot0ItemID: 2
Slot1ItemID: 2

This tells the animator that the character has dual pistols.

The demo scene is setup for two slots: slot 0 represents the right hand and slot 1 represents
the left hand. The number of slots is determined by the index of the Item Slot component.
When you create your character this component is added to the “Items” GameObject
underneath the character’s rig.

If your character can switch between both first and third person perspective then there
should be a matching slot for each perspective. For example, if the assault rifle is in slot 0,
the right hand, of the third person perspective then it should also be in slot 0, the right
hand, of the first person perspective. Each perspective must have the same number of item
slots in the same location.

The controller can handle any number of slots but the animator is only setup to handle two
slots so if you are using an animator and want to use more than two slots you’ll need to add
four new slot parameters. These parameters should be (where X represents the slot index):

SlotXItemID (int)

https://opsive.com/support/documentation/ultimate-character-controller/inventory/item-sets/
https://opsive.com/support/documentation/ultimate-character-controller/animation/animator/default-animator-values/

| 239

SlotXItemStateIndex (int)
SlotXItemStateIndexChange (trigger)
SlotXItemSubstateIndex (int)

Once these parameters are setup the Animator Monitor component will automatically set
the parameters based on the slot count (determined by the max Item Slot ID).

Animation
The primary method of the character playing an animation is through Unity’s Animator
component. If you have not used an Animator Controller before it is highly recommended
that you first take a look at the Unity Learn tutorial. As you are replacing animations ensure
you first check the animation to see if it has any Animation Events that will also need to be
replaced.

Procedural animations can be added to the first person arms and camera through the spring
system. The spring system makes it easy to add fluid animations without having to add them
through the Animator Controller. If you are using a different rig for your first person arms
then you will not be able to use the included first person animations. Unity’s Animator
component does not support animation retargeting for generic rigs.

Springs

The spring system is an extremely powerful system which allows for smooth procedural
motion without requiring any premade animations. This system is primarily used for the first
person perspective, though the third person perspective also uses it for camera recoil.

The spring has a Rest State (also known as the “static equilibrium”) where it “wants to be”.
If you move it away from the target value using external force, it will immediately and
continuously strive back to its target position or angle. The spring Stiffness – or mechanical
strength – determines how loosely or rigidly the spring behaves. Finally, the Damping makes
spring velocity wear off as it approaches its rest state. Springs can be used to simulate
everything from jello (a loose spring operating on object scale), an arrow hitting a wall (a
very stiff spring rotating the arrow with the pivot at the head) or an underwater camera (a
loose spring making the camera bounce softly as your feet hit the ocean floor).

Bobs

https://unity3d.com/learn/tutorials/topics/animation/animator-component?playlist=17099
https://unity3d.com/learn/tutorials/topics/animation/animator-component?playlist=17099
https://docs.unity3d.com/Manual/AnimationEventsOnImportedClips.html
https://opsive.com/support/documentation/ultimate-character-controller/animation/springs/
https://opsive.com/support/documentation/ultimate-character-controller/animation/springs/
https://docs.unity3d.com/Manual/Retargeting.html

| 240

Bobs are the sinusoidal motion of an object or the camera. Bobbing has been around for
ages in games as a means of moving the first person camera up and down while walking.
Modern first person cameras don’t always have a very pronounced view bob, but bob is still
very useful for animating the item model (and camera if used in moderation). If applying bob
along both the x and y vector you can get interesting results such as the feeling of being a
dinosaur or a huge ogre.

Noise

Procedural noise has been used in computer graphics and special effects for years as a
means of generating smoke, terrains and camera shakes (to name but a few areas). The
Ultimate Character Controller uses a standard perlin noise function for applying random
turbulence to the first person weapon and camera. Examples include a slight breathing
camera motion as you zoom in with a sniper rifle, gentle idle movements for a hand holding
a sub machine gun, or the heavily disturbed camera movements of a character that is drunk
or poisoned.

Inspected Fields

Any component that uses a spring can show the spring properties in the inspector.

The following fields can be modified:

Stiffness

Spring stiffness – or mechanical strength – determines how loosely or rigidly the spring
behaviors. A low value will result in a soft, sway motion, and a higher value will result will
stronger, stiffer movements.

| 241

Damping

Damping makes the spring velocity wear off as it approaches its rest state. Low values will
result in a very loose, sway motion. Higher values will either result in a motion that quickly
settles, or a stiff shaking motion. The result depends on the stiffness value.

Velocity Fade In Length

The amount of time it takes for the velocity to have its full impact. This can prevent the
spring from quickly snapping to the rest position when the game is initially started.

Max Soft Force Frames

The maximum number of frames that a soft force can be spread over. The higher the value
the more the spring will ease into the soft force.

Min Velocity

The minimum value of the velocity.

Max Velocity

The maximum value of the velocity.

Min Value

The minimum value of the spring.

Max Value

The maximum value of the spring.

Animator

Animator Controller

New Animator Controller

The animator controller included works well for the included demo scene but may not be the
best setup for your particular game. It is recommended that you start from a completely
new animator controller and add your own states/transitions. The character controller
doesn’t particularly care what structure the animator controller has. The only requirement
is that you have the same parameters as what the demo animator controller uses.

Structure

The Demo Animator for the third person character is made up of 13 layers. Each layer has a

https://opsive.com/support/documentation/ultimate-character-controller/animation/animator/animation-animator-structure/

| 242

specific role in terms of what it controls for the character’s movements which is achieved by
utilizing masks and transitions.

Base Layer

The Base Layer is the primary layer and contains all information related to movement for
the character. If no other layer is activated everything would default to this layer, so all
animations in this layer contain lower and upper body data.

The character’s movement is split into two basic states, Idle and Movement. When not in
motion and no other abilities are active, the character defaults to Idle. If the character is not
in motion but aiming, the character defaults to Aim Idle. Same thing if the character is in
motion, the character could either be in Movement or Aim Movement.

Aim Idle and Aim Movement are then broken down into three different forms of such
movement in the default animator: Aim, Melee Aim, and Bow Aim. Each of these aim
movement styles correspond to the Movement Set ID value which is set on each individual
weapon. In this case all shootable weapons (outside of the bow) are going to Aim (Movement
Set ID = 0), melee weapons are going to Melee Aim (Movement Set ID = 1), and the bow is
going to Bow Aim (Movement Set ID = 2). You can customize your animator to make use of
any number of Movement Set ID values, or only use one set.

Outside of character movement the Base Layer contains substates for a variety of abilities
which include Crouch, Fall, Interact, Jump, Quick Turn, Ride, Start Movement, and Stop
Movement. Crouch is an ability that is treated as another form of movement, so it’s substate
is set up identically to the standing idle and movement substates. The animator transitions
to each of these abilities based on the value of the Ability Index parameter.

Left Hand and Right Hand Layers

These two layers are masked to control only the left or right hand of the character
respectively. These layers are used to override the Base Layer if an item is equipped that
does not have a specific idle animation for the upper body. For example, if the Frag Grenade
is equipped the right hand should grip the grenade, but all other motion for the idle
animation would remain the same as the Base Layer. So in this case, an idle animation is
placed under the Frag Grenade substate within the Right Hand Layer to indicate that the
right hand fingers should be in the grip animation at all times.

Arms Layer

This layer is masked to control only the arms of the character, it does not utilize chest/torso
motion. This layer is used for any item animations that use both arms while the character is
in motion. The reason why these can’t be on the Upper Body Layer is so the chest is not
included when the character is in motion. If the chest were to be included when moving
during the equip animation, the walk cycle for the chest would become out of sync with the
base layer. Whenever the character is in motion the animator will use this layer for item
abilities such as equip/unequip, reload, etc.

| 243

Upperbody Layer

This layer is masked to control the entire upper body of the character, including the
chest/torso motion. This layer is used for any item animations that should utilize both arms
and the chest rotation.

The shootable weapon substates are identical to the states on the Arms Layer, so the ones
on the Upperbody Layer are used to include the chest rotation when the character is not in
motion.

The melee weapon substates include the same item actions as the Arms Layer, and in
addition also have any attack animations that should include the upper body while in
motion. The melee attack animations always include the chest rotation otherwise these
would look strange.

Finally, this layer also includes some abilities that utilize both arms and the chest bone such
as interact and pickup item.

Left Arm Layer / Right Arm Layer

These layers are masked to control only the left or right arm of the character and do not
include the chest/torso motion. These layers are used for any item actions that can be
performed with one arm only or use each arm separately.

For instance, with the lighter melee weapons such as the knife and sword, or the frag
grenade, while in motion the left arm does not need to play when performing item actions
such as equip/unequip, etc. That is why those are on this layer and not the Arms Layer.

The dual pistols are able to be used independently of each other and therefore have their
own individual actions on each layer. You can shoot with the left pistol (Left Arm Layer goes
to Attack) while the right pistol remains in idle (Right Arm Layer in Idle).

Left Upperbody Layer / Right Upperbody Layer

These layers are masked to control the left arm and the chest/torso motion of the character
or the right arm and the chest/torso motion of the character. This allows animations that
utilize one of the arms and the chest rotation to play.

For example, the secondary Frag Grenade throw occurs while another weapon is equipped,
so a secondary throw animation is under the Frag Grenade substate of each layer. This
allows the right arm to continue holding the Assault Rifle for instance, while the Left Arm
Upperbody Layer then overrides the Arms Layer and plays the Frag Grenade secondary
throw. Including the chest rotation with this allows the Frag Grenade throw to feel powerful
enough, while not overriding the primary weapon idle.

Additive Layer

This layer is masked to the upper body with a blending mode of additive to allow the
animations on this layer to add to the top of previous layers. For example, with the
shootable weapons the attack animations should simply add to the aim animation for each.

| 244

These attack animations include the recoil from shooting the weapon without being their
own overriding animation so that the animation seamlessly blends back into the aim state.

The Damage Visualization ability is also on this layer since the damage visualization
animations should add on to the top of any animation state the character may be in. For
instance if the character is jumping and gets hit, the jumping animation will continue to play
while the damage visualization adds on so the chest rotates to show the character was hit.

Additive Left Arm Layer / Additive Right Arm Layer

Same function as the Additive Layer except that these layers are used for additive actions
being performed on one arm only. In this case, the dual pistol attack is an additive
animation that should be applied to the left and right arm independently.

Full Body Layer

This layer is masked to include the entire avatar, and overrides any previous layer. This
layer has the ultimate say! Use cases for this layer are any animation that should
immediately take over and play using the full body such as abilities like Die and Revive. In
any part of the game the character could die, so this layer allows that to occur immediately
with clean transitions.

Other animations that make use of this layer are any full body melee attack animations. For
example, when the character attacks with the sword, the attack takes over even if the
character in motion already. For the knife, when the character is not in motion the full body
attack layer plays and includes the feet rotating for an added effect. When the character is
in motion and attacks with the knife it would play the Upper Body Layer and would not
utilize the Full Body Layer.

Animator Parameters
The Demo Animator for the third person and first person character utilizes 22 parameters,
which include the following:

Horizontal Movement

Float value to indicate horizontal direction and speed of character.

Forward Movement

Float value to indicate forward direction and speed of character.

Pitch

Float value to indicate viewpoint angle of character.

Yaw

Float value to indicate movement around the yaw axis of the character.

| 245

Speed

Float value to indicate the character’s speed. This value is set when the character is moving
on the Ultimate Character Locomotion component and can also be set by other abilities,
such as the Speed Change ability.

Height

Float value to indicate the character’s height in reference to whether the Height Change
ability is active or not.

Moving

Bool to indicate if the character is in motion or not, checked when moving and unchecked
when not moving.

Aiming

Bool to indicate if the character is aiming or not, checked when aiming and unchecked when
not aiming. In first person view this is always true.

Movement Set ID

Int value that specifies which movement set is currently active for the primary item
equipped. Movement Set ID is set on each item to allow for different aiming movement / idle
animations.

Ability Index

Int value that specifies which ability is currently active. This is set on each individual ability
under the Ability Index Parameter.

Ability Index Change

Trigger which indicates if the Ability Index has changed.

Ability Int Data

Int value that relates to the Ability Index. This value is utilized to provide more information
on a particular ability outside of the main Ability Index. For example, the interact ability
utilizes the Ability Int Data to indicate which particular interact animation should play based
on what object the character is interacting with.

Ability Float Data

Float value that relates to the Ability Index. This value is utilized to provide more
information on a particular ability outside of the main Ability Index. For example, the quick
turn ability utilizes the Ability Float Data to direct the transitions into the quick turn walk or
the quick turn run states. Since the character’s actual speed decreases to zero during quick
turn, the Ability Float Data allows the original speed to be captured so as to play the correct

https://opsive.com/support/documentation/ultimate-character-controller/character/abilities

| 246

animation and transition back into movement after quick turn is complete.

Slot 0 Item ID

Int value that indicates which item is currently equipped in Slot 0. This is set on the Item
component under Animator Item ID.

Slot 0 Item State Index

Int value that indicates which Slot 0 Item Ability is currently active.

Slot 0 Item State Index Change

Trigger which indicates if the Slot 0 Item State Index has changed.

Slot 0 Item Substate Index

Int value that is a secondary index related to the Item State Index. This value is utilized for
item abilities to provide more information outside of the Item State Index to allow variations
of animations within one active ability. For example, melee attack utilizes the Item Substate
Index to indicate which particular melee attack animation should play based on the
sequence setting.

Slot 1 Item ID

Int value that indicates which item is currently equipped in Slot 1. This is set on the Item
component under Animator Item ID.

Slot 1 Item State Index

Int value that indicates which Slot 1 Item Ability is currently active.

Slot 1 Item State Index Change

Trigger which indicates if the Slot1 Item State Index has changed.

Slot 1 Item Substate Index

Int value that is a secondary index related to the Item State Index. This value is utilized for
item abilities to provide more information outside of the Item State Index to allow variations
of animations within one active ability. For example, when the secondary frag grenade is
equipped the Slot 1 Item Substate Index will change to 11 if the character has run out of
grenades to throw.

LegIndex

Float value to indicate which leg is moving forward. This is enables smoother transitions
back into any movement animation. Right leg is 0, Left leg is 1.

https://opsive.com/support/documentation/ultimate-character-controller/items/
https://opsive.com/support/documentation/ultimate-character-controller/items/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/item-abilities/
https://opsive.com/support/documentation/ultimate-character-controller/items/
https://opsive.com/support/documentation/ultimate-character-controller/items/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/item-abilities/

| 247

Default Animator Values
When you add a new ability or item ability it will have a default value for the Ability Index or
Item State Index. This value can be changed to one that fits your Animator better but the
following are the default Ability Index values used:

Ability Ability Index
Jump 1
Fall 2
Height Change 3
Die 4
Revive 5
Start Movement 6
Stop Movement 7
Quick Turn 8
Interact 9
Damage Visualization 10
Pickup Item 11
Ride 12
Melee Counter Attack Response 13
Drive 14
Generic 10000

The following are the default Item State Index values used for each Item Ability:

Item Ability Item State Index
Aim 1
Use 2
Reload 3
Equip 4
Unequip 5
Drop 6

The following are the default Item ID values used for each Item:

Item Item ID
Assault Rifle 1
Pistol 2
Shotgun 3
Bow 4
Sniper Rifle 5
Rocket Launcher 6
Body 21
Sword 22

| 248

Knife 23
Katana 24
Shield 25
Frag Grenade 41
Flashlight 42
Fireball 61
Particle Stream 62
Ricochet 63
Heal 64
Shield Bubble 65
Teleport 66

The following are the default Movement Set ID values used for each item stance:

Stance Movement Set ID
Default 0
Melee 1
Bow 2

First Person Arms
The arms use a generic model setup so they require the animations to be created
specifically for that rig and cannot use Unity’s animation retargetting feature. An easy way
to get started though is to use the third person humanoid animations for the first person
view. You can do this by using a tool such as FPS Mesh Tool. With the FPS Mesh Tool it can
split your mesh up into just the arms and allow you to use the humanoid animations. While
these animations won’t look perfect for a first person view they will allow you to prototype
quickly.

If you are creating your own generic arms you can follow this page for importing your
animations. The table below lists the positives and negatives of using a humanoid rig for
your character. We wanted the first person arms to be of the highest quality so we chose the
generic arms option for the demo scene.

Humanoid Arm Rig Positives

Supports animation retargetting
Supports Unity IK

Humanoid Arm Rig Negatives

Contains unnecessary data within the animation
Cannot have unique first person animations, for extra detail while the camera is closer
to the first person weapon

If you are using the FPS Mesh Tool the video below explains how the integration works:

https://assetstore.unity.com/packages/tools/modeling/fps-mesh-tool-28006?aid=1100lGdc
https://docs.unity3d.com/Manual/GenericAnimations.html

| 249

Replacing Animations
The Ultimate Character Controller uses Unity’s Animator Controller to control all of its
animations. The Animator Controller makes it extremely easy to replace the built-in
animations with your own. If you have never used the Animator Controller before take a
look at these Unity Learn videos. These videos will give you an overview of the Animator
Controller as well as how to setup your own animations. Most of this work is already taken
care of for you with the Ultimate Character Controller, you’ll just need to replace the
animation clips with your own. Unity also did a live training video which goes into depth for
how to setup a humanoid character with the Animator Controller.

As you are replacing the animations there are two major things to keep in mind:

Any animation events on the original animation should also be added to the new
animation. The Animation Event Trigger within the inspector makes it easy to use a
timer instead of animation events, but if any animations are already setup then they
should continue to be used unless you change the value within this trigger.
Ensure you replace the animations for all of the layers. As as example if you are
replacing the walk animation within the base layer you should also ensure the upper
body layers also match this new walk animation for each item.

Animation Event Trigger
As you are looking through the inspector fields on the Ultimate Character Controller objects
you’ll see a field which looks similar to this field within the Jump ability:

This field is an Animation Event Trigger and it allows you to specify if the object should wait
for an animation event before the event is triggered or if a timer should be used instead
with a specified duration. In this screenshot Wait For Animation Event is enabled which
means the Jump ability will wait for the “OnAnimatorJump” event. For the animation event
ensure the Function name is “ExecuteEvent” and the String value is the animation event
that you want to call.

https://learn.unity.com/tutorial/controlling-animation
https://www.youtube.com/watch?v=wf6vtCgLk6w
http://docs.unity3d.com/Manual/AnimationEventsOnImportedClips.html
https://opsive.com/support/documentation/ultimate-character-controller/animation/animation-event-trigger/
https://docs.unity3d.com/Manual/AnimationEventsOnImportedClips.html

| 250

The animation event that it is looking for can be determined by either hovering over the
Jump Event field and reading the tooltip or look at the Tooltip attribute for that field within
the code.

If you are using animation events with an item (such as using the item or reloading it) and
are using both a first and third person perspective be sure change the animation event for
both perspectives.

Animation Event Debugging

If Wait For Animation Event is enabled the animator will send the event. Debugging when
this event is sent can be done by enabling Log Events on the Animator Monitor component.
In the OnAnimatorJump example the following will be outputted to the console when Log
Events is enabled:

The Animator.Update line is highlighted because it is here that we can see that the
Animator is responsible for sending the animation event. If Wait For Animation Event was
not selected then the event would be sent from the Scheduler and the call stack would be
different.

If you are having issues with the timing of when events occur a good debug step is to look at
this call stack to determine when the event is being triggered. If it is being triggered too
soon and it is being triggered from the Animator then you should move the animation event
later in the animation. If you are working in a first person perspective and have a full body
animation ensure that this event is changed on both the first person and third person
Animator.

https://opsive.com/support/documentation/ultimate-character-controller/animation/animator/animator-controller/

| 251

Input
The Ultimate Character Controller supports input via keyboard/mouse, controllers, and
mobile input with virtual controls. The controller support uses Unity’s Input Manager which
doesn’t have wide controller support – if your game is going to be making use of controllers
we highly recommend an asset that is dedicated to controller support such as Rewired or
InControl. The Ultimate Controller is integrated with both of these assets.

The Player Input component is base component that the Unity Input and integration
components derive from. By using the Player Input component any new input can be added
by just swapping out the component and the rest of the code does not need to change. If
your character is an AI agent then no input component should be added – the AI
implementation is responsible for interacting with the character.

Events

The “OnEnableGameplayInput” event can be sent if you’d like to disable (or enable)
character and camera input. As an example the following will disable the input on the
character specified by m_Character:

EventHandler.ExecuteEvent(m_Character, "OnEnableGameplayInput",
false);

The Opsive.Shared.Events namespace must be included for the EventHandler class to be
found.

using UnityEngine;
using Opsive.Shared.Events;

public class MyObject : MonoBehaviour
{
 [Tooltip("A reference to the Ultimate Character Controller
character.")]
 [SerializeField] private GameObject m_Character;

 /// <summary>
 /// Disable the input.
 /// </summary>
 private void Start()
 {
 EventHandler.ExecuteEvent(m_Character,
"OnEnableGameplayInput", false);
 }
}

API

The PlayerInput API follows the same standard as Unity’s input class with GetButton,
GetButtonDown, GetButtonUp, and GetAxis methods. This component also allows for double

https://opsive.com/support/documentation/ultimate-character-controller/programming-concepts/events/

| 252

press or long press detection with GetDoublePress and GetLongPress.

As an example the following code will check if the “Jump” button is down:

using UnityEngine;
using Opsive.UltimateCharacterController.Input;

public class MyObject : MonoBehaviour
{
 [Tooltip("A reference to the Ultimate Character Controller
character.")]
 [SerializeField] private GameObject m_Character;

 /// <summary>
 /// Initialize a reference to PlayerInput.
 /// </summary>
 private void Awake()
 {
 m_PlayerInput = m_Character.GetComponent<PlayerInput>();
 }

 /// <summary>
 /// Check for the jump button press.
 /// </summary>
 private void Update()
 {
 if (m_PlayerInput.GetButtonDown("Jump")) {
 // Do Jump.
 }
 }
}

Inspected Fields

Horizontal Look Input Name

The name of the horizontal camera input mapping.

Vertical Look Input Name

The name of the vertical camera input mapping.

Look Vector Mode

Specifies how the look vector is assigned. If a mouse is being used then the look vector will
almost always be based on the mouse movement. If a controller is used then the controller
will supply the look input.

Smoothed: Apply a smoothing to the look vector. This smoothing interpolates the input
over several frames to reduce jerky player input.

| 253

Unity Smoothed: Uses the input’s direct value.
Raw: Use the input’s direct (raw) value.
Manual: The look vector is assigned manually. This is useful for VR head movement.

Look Sensitivity

If using look smoothing, specifies how sensitive the mouse is. The higher the value to more
sensitive.

Look Sensitivity Multiplier

If using look smoothing, specifies a multiplier to apply to the LookSensitivity value.

Smooth Look Steps

If using look smoothing, the amount of history to store of previous look values.

Smooth Look Weight

If using look smoothing, specifies how much weight each element should have on the total
smoothed value (range 0-1). Reducing the weight to 0 is similar to setting the Look Vector
Mode to Raw. A value of 1 will cause the result to be a simple average of all of the recently
sampled smooth steps (and will feel very laggy).

Smooth Exponent

If using look smoothing, specifies an exponent to give a smoother feel with smaller inputs.

Look Acceleration Threshold

If using look smoothing, specifies a maximum acceleration value of the smoothed look value
(0 to disable).

Controller Connected Check Rate

The rate (in seconds) the component checks to determine if a controller is connected. The
only way to check if a controller is connected in Unity generates garbage so this value
should be set to 0 if you do not plan on supporting controllers.

Connected Controller State

The state that should be activated when the controller is connected.

Force Input

Specifies if any input type should be forced. By default the controller will enable the virtual
buttons for a mobile platform but this field allows you to force standalone input on a mobile
platform. Virtual input can also be forced for a platform that normally does not use virtual
controls.

| 254

Disable Cursor

Should the cursor be disabled?

Enable Cursor with Escape

Should the cursor be enabled when the escape key is pressed?

Prevent Look Vector Changes

If the cursor is enabled with escape should the look vector be prevented from updating?

Virtual Controls
For more robust virtual controls we recommend an input asset dedicated to mobile input
such as Control Freak or Easy Touch which the Ultimate Character Controller is integrated
with. A basic set of virtual controls are included though which allow for virtual buttons,
virtual joysticks, or virtual touchpads. The built-in virtual controls will automatically be
enabled on a mobile platform. They can also be force enabled within the Unity Input
component.

All virtual controls must be a child of the Virtual Controls Manager component. This allows
the virtual controls to associate themselves with the correct character.

Setup

Open the Setup Manager.1.
Click on the “Add UI” button. This will add the Demo/Prefabs/UI/VirtualControls2.
prefab as a child of the Canvas GameObject.

Virtual Button

The virtual button allows for a virtual control that the player can press.

Button Name

The name of the button input.

Virtual Joystick

The virtual joystick represents a joystick that stays within the specified radius range. When
the press is released the joystick know will snap back to the starting position.

Horizontal Input Name

The name of the horizontal input axis.

Vertical Input Name

The name of the vertical input axis.

https://www.assetstore.unity3d.com/#!/content/11562?aid=1100lGdc
https://www.assetstore.unity3d.com/#!/content/3322?aid=1100lGdc

| 255

Joystick

A reference to the joystick knob that moves with the press position.

Radius

The maximum number of pixels that the joystick can move.

Deadzone Radius

The joystick will return a zero value when the radius is within the specified deadzone radius
of the center.

Virtual Touchpad

The virtual touchpad that will return an input axis position of the press relative to the
starting press position.

Horizontal Input Name

The name of the horizontal input axis.

Vertical Input Name

The name of the vertical input axis.

State System

The State System is an incredibly powerful system built into the Ultimate Character
Controller. Any game will have the character switching between component values as they
play the game. For example, lets take a simple case of zooming the camera by changing the
field of view. When the Aim ability is active it could manually set the field of view, but what
if you want a different zoom for the assault rifle versus the sword? Normally you’d have to
manually add a case for the assault rifle (or sword) and add that to the Aim ability so when
the ability is activated it correctly switches field of view. As your game grows this would be
a very tedious process. The State System simplifies this by moving much of the work into
the editor and solving runtime blending automagically.

The backbone of the State System is the Presets System.

Creating a New State

States can be created by selecting a component which has the “States” foldout with the
reorderable list. Clicking on the plus button on the bottom right of the state list will allow
you to select a state with a new preset or an already created preset. Selecting one of these
options will create the new state. After the state is created it must be named. Names are
case sensitive and must be unique within the state list.

| 256

State Order

The State System works similarly to the layers of a paint program. The state (layer) at the
bottom represents the current inspector values of a component. The state above it
represents a preset that will override all – or just some – of the underlying state value. The
remaining presets in the list will be recombined when a state is disabled or enabled.

States can be reordered by dragging the two line icon () on the left. Any currently active
states at the top will override any active states beneath them.

Default State

The bottom-most state is called the Default state. It represents the standard component
values and cannot be edited, removed, or moved.

Active States

States that are active will be bold and have “(Active)” appended to the end of the state
name. States cannot be edited while the game is running so their fields are disabled in the
inspector.

Preset

The preset column maps a particular preset to a state. Each state (besides the bottom
Default state) must have a preset assigned to it.

Blocking

Sometimes you want states to override each other entirely. For example, you may not want
the character to aim down the sights while running, and so you want the Run state to
override the Zoom state on the camera and weapon. Theoretically you could block out all
underlying states by applying a preset that contains every possible value for the component
in question, however this becomes labor intensive very quickly.

State blocking should be used instead. Blocking allows a state to mute one more other
states on the component while active. The “Blocked By” dropdown will list the available

| 257

states that can be blocked.

Every state that is selected will be blocked while the current state is active. States cannot
block themselves, states that block them, or the Default state.

Persist

The Persist button will update the preset with the current values of the component. This is
useful when you change values within the component and then would like to apply those
values to a particular preset.

Activate

The Activate button is a helpful button which will activate a particular state manually.
Pressing on the Activate button when a state is active will deactivate the state.

Removing a state

States can be removed by selecting an existing state within the list and then clicking the
minus button on the bottom right of the state list.

API

Set State

States can be activated or deactivated programmatically with StateManager.SetState:

StateManager.SetState(m_Character, "MyState", true);

The first parameter specifies the GameObject that should have the states activated or
deactivated on. The second parameter specifies the state name that should be activated or
deactivated. The final parameter specifies if the state should be enabled or disabled
(true/false).

The state manager lives within the Opsive.UltimateCharacterController.StateSystem
namespace.

| 258

Add State

New states can be added at runtime with StateManager.AddState:

using Opsive.Shared.StateSystem;
using Opsive.UltimateCharacterController.Character;
using UnityEngine;

public class StateAdd : MonoBehaviour
{
 [Tooltip("The name of the state that should be added.")]
 public string m_PresetName;
 [Tooltip("A reference to the preset that belongs to the state.")]
 public Preset m_Preset;

 void Start()
 {
 var state = new State(m_PresetName, m_Preset, null);
 var characterLocomotion =
GetComponent<UltimateCharacterLocomotion>();

 // gameObject: The GameObject that the state should be added
to.
 // characterLocomotion: A reference to the StateBehavior (such
as Ultimate Character Locomotion or Camera Controller) or the
StateObject (such as Jump or Combat) that the state should be added
to.
 // characterLocomotion.States: The current set of states added
to the object.
 // state: The state that should be added.
 // 0: The index that the state should be added to. A 0 value
indicates the top of the state list.
 StateManager.AddState(gameObject, characterLocomotion,
characterLocomotion.States, state, 0);
 }
}

Presets
The Preset System allows you to take a snapshot of all of the properties in a component and
save it to an asset. Presets can be loaded via script at runtime and used to quickly
manipulate all of the parameters of a component as needed during gameplay.

Create Presets

Objects which allow presets will have a reorderable list displayed at the bottom of its
inspector under the “States” foldout. New presets can be created by clicking the plus button
on the bottom right of the reorderable list. A menu will then appear and “Create New
Preset” should be selected:

| 259

Adding Properties

For best performance only C# properties can be added to presets. The property must have a
public get and set attribute in order for it to be visible to the preset system. Presets can
store any type of serializable file besides references to objects within a scene. This is a Unity
restriction and occurs because project-level files (such as presets) cannot reference objects
within a scene.

The property can then be selected within the “Add Property” dropdown after clicking on the
preset. In this example a preset for the Jump ability is selected:

Removing Properties

After a property is added it can be removed by clicking on the “X” button on the right to the
property value:

Attributes
The Attribute Manager is a component added to your character which can describe a set of
values that change over time. These values are called attributes and can be used for the
character’s health, shield, stamina, hunger, etc. Any number of attributes can be added to
the Attribute Manager.

https://www.tutorialspoint.com/csharp/csharp_properties.htm

| 260

In this screenshot the Attribute Manager is visible and there are three attributes added:
Health, Shield, and Stamina. The Stamina attribute is selected and the details will be shown
for any selected attribute. Attributes can be added and removed by selecting the plus or
minus icons on the bottom right of the list.

Name

The name of the attribute. This is used to identify the attribute that should be retrieved from
the Attribute Manager and must be unique.

Min Value

The minimum value that the attribute’s value can be. This value cannot be greater than the
Max Value.

Max Value

The maximum value that the attribute’s value can be. This value cannot be less than the Min
Value.

Value

The current value of the attribute.

Auto Update Value Type

If the value isn’t at the min or max value then it can automatically be updated to reach the
min or max value.

None: The attribute will not automatically update.
Decrease: Automatically decrease the value until the Min Value is reached.
Increase: Automatically increase the value until the Max Value is reached.

Auto updating is useful in situations such a shield or stamina where the value should
automatically regenerate to the max value. Imagine if the character is taking damage and

| 261

the shield’s value is being affected by this damage. Once the character is no longer taking
any damage the shield should start to regenerate back to its max value.

Auto Update Start Delay

Specifies a time (in sections) that the attribute should start to be auto updated after the
attribute’s value is changed.

Auto Update Interval

After the start delay has elapsed the interval specifies how often the value is continuously
updated until it reaches the target value.

Auto Update Amount

The amount value specifies the amount to add to the attribute’s current value every time the
auto update occurs.

API

Get Attribute

The most common operation that you’ll perform on the Attribute Manager is to get an
attribute and then modify its value. In the following code snippet an attribute will be
retrieved and a value of 10 will be added to the Health attribute.

var attribute = m_AttributeManager.GetAttribute(“Health”);
attribute.Value += 10;

No checks need to be performed to ensure the value stays within the Min and Max value as
the value will automatically be clamped.

Value Change

You can receive notification when an attribute changes value by registering for the
“OnAttributeUpdateValue” event. The actual attribute whose value was changed will be sent
as the only parameter of this event.

private void OnUpdateValue(Attribute attribute)
{
 Debug.Log("New Attribute Value:" + attribute.Value);
}

Health
The Health component uses the Attribute Manager to determine how much health or shield
the object has left. The Health component is a generic component that can work on any
object – it doesn’t have to only be added to an Ultimate Character Controller character. The
Character Health is a subclass of the Health component and this allows the character to
take fall damage. When the object dies a set of objects can be spawned or destroyed. This is

| 262

useful for example if you want to spawn wood shards in the case of a wooden crate.

API

If you’d like to deal damage to the health component directly you can call the Damage
method. This method is overloaded which allows for many different damage options.
ImmediateDeath will kill the object immediately. The object can be healed with the Heal
method.

using UnityEngine;
using Opsive.UltimateCharacterController.Traits;

public class MyObject : MonoBehaviour
{
 [Tooltip("The character that has the health component.")]
 [SerializeField] protected GameObject m_Character;

 /// <summary>
 /// Damages and heals the character.
 /// </summary>
 private void Start()
 {
 var health = m_Character.GetComponent<Health>();
 // Cause 10 damage to the character.
 health.Damage(10);

 // Heal the character by 10.
 health.Heal(10);

 // Kill the character.
 health.ImmediateDeath();
 }
}

Events

The Health component exposes three events: OnHealthDamage, OnHeal, and OnDeath.
These events are executed through the Event System and are also executed with Unity’s
built-in event system.

OnHealthDamage

When the Health component takes damage it will execute the “OnHealthDamage” event.
This event can then be used by other components to determine that an action needs to be
taken. For example, using the event system you can register for the OnHealthDamage event:

EventHandler.RegisterEvent<float, Vector3, Vector3, GameObject,
Collider>(gameObject, "OnHealthDamage", OnDamage);

And then the OnDamage method will execute when the Health component takes damage:

https://opsive.com/support/documentation/ultimate-character-controller/programming-concepts/events/
https://unity3d.com/learn/tutorials/topics/scripting/events

| 263

private void OnDamage(float amount, Vector3 position, Vector3 force,
GameObject attacker, Collider hitCollider)
{
 Debug.Log("Object took " + amount + " damage at position " +
position + " with force " + force + " by attacker " + attacker + ".
The collider " + hitCollider + " was hit.");
}

With this the full component looks like:

using UnityEngine;
using Opsive.Shared.Events;

public class MyObject : MonoBehaviour
{
 public void Awake()
 {
 EventHandler.RegisterEvent<float, Vector3, Vector3,
GameObject, Collider>(gameObject, "OnHealthDamage", OnDamage);
 }

 /// <summary>
 /// The object has taken damage.
 /// </summary>
 /// <param name="amount">The amount of damage taken.</param>
 /// <param name="position">The position of the damage.</param>
 /// <param name="force">The amount of force applied to the object
while taking the damage.</param>
 /// <param name="attacker">The GameObject that did the
damage.</param>
 /// <param name="hitCollider">The Collider that was hit.</param>
 private void OnDamage(float amount, Vector3 position, Vector3
force, GameObject attacker, Collider hitCollider)
 {
 Debug.Log("Object took " + amount + " damage at position " +
position + " with force " + force + " by attacker " + attacker + ".
The collider " + hitCollider + " was hit.");
 }

 public void OnDestroy()
 {
 EventHandler.UnregisterEvent<float, Vector3, Vector3,
GameObject, Collider>(gameObject, "OnHealthDamage", OnDamage);
 }
}

OnHealthHeal

The “OnHeal” event will be executed when the Heal method is called. This will increase the

| 264

object’s health. You can subscribe to the OnHealth with:

EventHandler.RegisterEvent<float>(gameObject, "OnHealthHeal", OnHeal);

When OnHeal is called it will include the amount of health that the object was healed by.

/// <summary>
/// The object has been healed.
/// </summary>
/// <param name="amount">The amount of health that the object was
healed by.</param>
private void OnHeal(float amount)
{
 Debug.Log("The object was healed with " + amount + " health.");
}

OnDeath

The Health component is also responsible for sending the “OnDeath” event which you can
subscribe to by calling:

EventHandler.RegisterEvent<Vector3, Vector3, GameObject>(gameObject,
"OnDeath", OnDeath);

When OnDeath is called it will include the force, position, and attacker that caused the
death. These parameters will be the same value as those received by “OnHealthDamage”.

/// <summary>
/// The object has died.
/// </summary>
/// <param name="position">The position of the force.</param>
/// <param name="force">The amount of force which killed the
object.</param>
/// <param name="attacker">The GameObject that killed the
object.</param>
private void OnDeath(Vector3 position, Vector3 force, GameObject
attacker)
{
 Debug.Log("The object was killed by " + attacker);
}

Invincible

Set to true if the object is invincible and cannot be destroyed.

Time Invincible After Spawn

The amount of time after the object spawns that it should be invincible. This is useful in an
intense fire fight and you want to give the player a few moments to get their bearing before
they can be damaged.

| 265

Health Attribute

The name of the attribute within the Attribute Manager that should be used for the object’s
health. By default, the health will not regenerate automatically.

Shield Attribute

The name of the attribute within the Attribute Manager that should be used for the object’s
shield. In many games the shield can regenerate so that’s why the Health component can
use a second attribute.

Hitboxes

Maps a collider to a multiplier to adjust the damage based on the collider hit. This can be
used for instant kills with a headshot. For an instant headshot kill the collider should be the
character’s head collider, and the multiplayer should be an extremely large value. When the
head collider is damaged the multiplier value will increase the amount of damage done and
with a large enough value the object will instantly die.

Max Hitbox Collision Count

The maximum number of colliders that can be detected when determining if a hitbox was
damaged.

Spawned Objects on Death

A list of objects that should spawn when the object dies. This can be used for particle effects
upon death.

Destroyed Objects on Death

A list of objects that should be destroyed when the object dies. This can be used to cleanup
any objects that the object spawned.

Deactivate on Death

Set to true if the object should be deactivated when the object is killed.

| 266

Death Layer

The layer that the object should occupy upon death. This can be used to have the physics
engine ignore the main CapsuleCollider on the character and instead use the ragdoll
colliders.

Take Damage Audio Clip Set

A set of AudioClips which can be played when the object takes damage.

Heal Audio Clip Set

A set of AudioClips which can be played when the object is healed.

Death Audio Clip Set

A set of AudioClips which can be played when the object dies.

Apply Fall Damage

Added with the Character Health component, optionally determine if the character should
take damage after landing from a predetermined height.

Min Fall Damage Height

The minimum height that the character needs to fall before taking any fall damage.

Min Fall Damage

The amount of damage to apply to the character when the character falls from the minimum
height.

Max Fall Damage

The amount of damage to apply to the character when the character falls from the maximum
height.

Death Height

The height at which the character should be killed because they fell from too great of a
height.

Damage Curve

Specifies how much fall damage to apply based on the fall height. The x axis (0 – 1)
represents the distance fallen and the y axis (0 – 1) represents the amount of damage to
apply. A value of 0 on the x axis represents the minimum fall damage height while a value of
1 represents the death height. A value of 0 on the y axis represents the minimum amount of
fall damage while a value of 1 represents the maximum fall damage.

| 267

Inverse Kinematics (IK)
Inverse Kinematics(IK) is the process of adjusting the character’s bones after the animation
frame has completed.IK is extremely useful to position the feet so they are always on the
ground, rotating the upper body so the character always looks at the crosshairs, and
positioning the hands so they are properly holding the item.The CharacterIK component
included with the Ultimate Character Controller uses Unity’s IK solution which only works
on humanoid rigs.This means that the CharacterIK component will not work with your first
person arms because it is a generic rig.

Inspected Fields

Base Layer Index

The index of the base layer within the Animator Controller.

Upper Body Layer Index

The index of the upper body layer within the Animator Controller.

Debug Draw Look Ray

Draw a debug line to see the direction that the character is facing (editor only). When this
field is enabled you’ll see a green line similar to the image below.

https://docs.unity3d.com/Manual/InverseKinematics.html

| 268

Layer Mask

The layers that the component should use when determining the objects to test against. This
mask allows the IK component to ignore invisible layers and is useful for stairs.For example,
at design time you may place an invisible plane to act as the slope so the character smoothly
moves up the stairs. IK shouldn’t position the character’s feet on this invisible plane, rather
the feet should be positioned directly on the stairs. By using the Layer Mask field you can
limit what objects the IK component detects.

Look At Offset

Any offset to apply to the look at direction for the body and arms. The offset allows the
character to adjust look direction without the camera actually changing angle.The left
image below has an offset of (0, 0, 0) and the right image has an offset of (0.5, 0, 0).

Look at Body Weight

Determines how much weight is applied to the body when looking at the target.A value of 0
indicates that the body should not look at the target while a value of 1 indicates the
maximum amount of weight should be applied.

Look at Head Weight

Determines how much weight is applied to the head when looking at the target.A value of 0
indicates that the head should not look at the target while a value of 1 indicates the
maximum amount of weight should be applied. The screenshots below show increasing
weight values for the body and head look at weight.

| 269

Look at Eyes Weight

Determines how much weight is applied to the eyes when looking at the target.A value of 0
indicates that the eyes should not look at the target while a value of 1 indicates the
maximum amount of weight should be applied.

Look at Clamp Weight

A value of 0 means the character is completely unrestrained in motion, 1 means the
character motion completely clamped (look at becomes impossible) (0-1).

Look at Adjustment Speed

The adjustment speed to apply to the Look At position.

Active Look At State Name

The name of the state when the character is actively looking at a target.

Look At Weight Adjustment Speed

The speed at which the look at weight should adjust.

Hips Position Adjustment Speed

The speed at which the hips position should adjust between using IK and not using IK. The
hips will change position when the character is standing on uneven ground.As an example,
imagine that the character is standing on a set of stairs. The stairs have two sets of

| 270

colliders: one collider which covers each step and another plane collider at the same slope
as the stairs. The character’s collider is going to be resting on the plane collider while
standing on the stairs and the IK system will be trying to ensure the feet are resting on the
stairs collider.In some cases the plane collider may be relatively far above the stair collider
so the hip needs to be moved down to allow the character’s foot to hit the stair collider.

Foot Offset Adjustment

The offset of the foot between the foot bone and the base of the foot. This value should be
increased if the bottom of your character’s foot is intersecting with the ground.

Foot Weight Active Adjustment Speed

The speed at which the foot weight should adjust to when foot IK is active.

Foot Weight Inactive Adjustment Speed

The speed at which the foot weight should adjust to when foot IK is inactive.

Override Foot IK Weight

The overridden weight for foot IK. Set to -1 to disable.

Upper Arm Weight

Determines how much weight is applied to the upper arms when looking at the target.A
value of 0 indicates that the upper arms should not look at the target while a value of 1

| 271

indicates the maximum amount of weight should be applied. In the left screenshot below the
upper arm weight has a value of 0 and the right screenshot has a value of 1.

Upper Arm Adjustment Speed

The speed at which the upper arm rotation should adjust to using IK and not using IK.

Hand Weight

Determines how much weight is applied to the hands when looking at the target.A value of 0
indicates that the hands should not look at the target while a value of 1 indicates the
maximum amount of weight should be applied. In the left screenshot below the weight has a
value of 0 and the right screenshot has a weight of 1. The upper arms have a weight of 0 in
this screenshot which is why the left hand in the image on the right isn’t positioned
correctly.

| 272

Hand Adjustment Speed

The speed at which the hand position/rotation should adjust to using IK and not using IK.

Hand Position Offset

Specifies a local offset to add to the position of the hands.

Left Hand Position Spring

The left hand positional spring used for IK movement. This can be used for adding positional
effects such as recoil.

Left Hand Rotation Spring

The left hand rotational spring used for IK movement. This can be used for adding rotational
effects such as recoil.

Right Hand Position Spring

The right hand positional spring used for IK movement. This can be used for adding
positional effects such as recoil.

Right Hand Rotation Spring

The right hand rotational spring used for IK movement. This can be used for adding
rotational effects such as recoil.

| 273

Objects

Explosions
The Explosion component is a relatively simple component which will apply a force and
damage to any nearby Rigidbodies or objects with the Health component attached. When it
is spawned it can optionally explode immediately or wait for the Explode method to be
called.

Setup

An explosion can be setup by performing the following:

Open the Object Manager and create a new object of type Explosion.1.
Specify the material used by the Particle System.2.
Optionally add an AudioSource if the explosion should play an audio clip when it3.
explodes.
Assign the prefab to the object that should cause the explosion. As an example it can4.
be assigned to the Frag Grenade under the Spawned Objects on Destruction foldout:

Inspected Fields

Explode On Enable

Should the object explode when the object is enabled?

Radius

Determines how far out the explosion affects other objects.The magnitude of the force and
damage will be scaled based on the distance that the object was hit – the further from the
explosion the less force/damage the object will receive.

Damage Amount

The maximum amount of damage to explosion applies to objects with the Health component.

Impact Force

The maximum amount of force the explosion applies to nearby Rigidbody/IForceObject
objects.

https://opsive.com/support/documentation/ultimate-character-controller/editors/objects/

| 274

Impact Layers

The layers that the explosion can affect.

Line Of Sight

Does the explosion require line of sight in order to damage the hit object

Lifespan

The duration of the explosion.

Max Collision Count

The maximum number of objects that the explosions can detect.

Explosion Audio Clip Set

A set of AudioClips that can be played when the explosion occurs. The AudioClip that is
played will randomly be selected out of this list.

Damage Processor
The Damage Processor is a Scriptable Object that allows you to customize how damage is
computed between a Damage Originator (such as a Melee Weapon or Projectile) and a
Damage Targer (such as the object’s Health).

If not specified all weapons will use the default Damage Processor which deals simple
damage. A custom Damage Processor can be created and set on the Character via a Damage
Processor Module or individually on each weapon. It can also be used in other scenarios
where an object can deal damage without any weapons. The main use case for having a
custom Damage Processor is to compute damage using an external stat and modifier
system.

The Damage Processor component can be set on the character GameObjects allowing all
weapons to use the same Damage Processor.

The Damage Processor can also be set on the items individually. The Damage Processor
field can be found under the Impact section.

| 275

The Damage Processor system is broken down in multiple parts.

Damage Processor

The Scriptable Object where you can define how to compute the damage dealt to an object.

To create a custom Damage Processor simply inherit the class and override the Process
function

[CreateAssetMenu(fileName = "MultiplierDamageProcessor", menuName =
"Ultimate Character Controller/Damage Processors/Multiplier Damage
Processor")]
public class MultiplierDamageProcessor: DamageProcessor
{
 [SerializeField] protected float m_Multiplier;

 /// <summary>
 /// Processes the DamageData on the DamageTarget.
 /// </summary>
 /// <param name="target">The object receiving the
damage.</param>
 /// <param name="damageData">The damage data to be applied to
the target.</param>
 public override void Process(IDamageTarget target, DamageData
damageData)
 {
 damageData.Amount *= m_Multiplier;
 target.Damage(damageData);
 }
}

Damage Originator

The Damage Originator is an interface. It can be used to define the object that is dealing the

| 276

damage.

/// <summary>
/// Specifies an object that can cause damage.
/// </summary>
public interface IDamageOriginator
{
 // The GameObject that causes damage.
 GameObject Owner { get; }
 // The GameObject that originates the damage. This can be
different from the Owner in that it can be the IUsableItem.
 GameObject OriginatingGameObject { get; }
}

The Owner can be the player character
The OriginationGameObject can be the Weapon

Damage Target

The Damage Target is an interface. It can be used to define the object being hit.

/// <summary>
/// Specifies an object that can receive damage.
/// </summary>
public interface IDamageTarget
{
 // The GameObject that receives damage.
 GameObject Owner { get; }
 // The GameObject that was hit. This can be a child of the Owner.
 GameObject HitGameObject { get; }
 /// <summary>
 /// Damages the object.
 /// </summary>
 /// <param name="damageData">The damage received.</param>
 void Damage(DamageData damageData);
 /// <summary>
 /// Is the object alive?
 /// </summary>
 /// <returns>True if the object is alive.</returns>
 bool IsAlive();
}

The Owner can be the character and the hit GameObject contains the collider that was hit.

Damage Data

The damage data is a compilation of all the information required to decide how the damage
should be computed.

Damage Originator: The Object that caused the damage.

| 277

Damage Target: The Object that is being damaged.
Amount: The amount of damage to deal in floats.
Position: The position of the hit.
Direction: The direction of the hit.
Force Magnitude: The force magnitude of the hit.
Frames: The number of frames that the force should be applied over.
Radius: The radius of the force.
Hit Collider: The collider that was hit.
User Data: Any additional user data that should be taken into account when using a
custom Damage Processor.

The User Data property is quite useful when using a custom Damage Processor.

Magic Particle
The MagicParticle will perform a Magic Item impact when it collides with an object. In order
for this to work correctly the ParticleSystem must have collisions enabled and the Send
Collision Event parameter enabled.

Setup

A new projectile can be created by performing the following:

Open the Object Manager and create a new object of type Magic Particle.1.
Add the Spawn Particle Cast Action to the Magic Item.2.
Assign the prefab to the Particle Prefab Cast Action:3.

https://docs.unity3d.com/Manual/PartSysCollisionModule.html
https://docs.unity3d.com/Manual/PartSysCollisionModule.html
https://opsive.com/support/documentation/ultimate-character-controller/editors/objects/

| 278

Object Identifier
Tthe Detect Object Ability Base ability can filter the found object based on a layer mask or
an object identifier value. If an object identifier is used the target object should contain the
Object Identifier component with an ID that matches the ability’s Object ID value. In the
screenshot below the ability’s Object ID value would be set to 106.

Demo IDs

In the demo scene the following IDs are used. These IDs are specific to the demo scene and
the same IDs do not need to be used for your project. ObjectIdentifier is used by the
DetectObjectAbilityBase ability for filtering interactions by Object ID.

4: Arrow Attachment, for the bow to determine where the arrow will be held.
8: Designates objects for the Look At ability to focus on.
14: SkyCar, for the Drive ability.

Object Pickup
The Object Pickup component is an abstract class that allows the character to pickup
objects such as a health pack or item. The Object Pickup object can be created with the
Object Manager.

Inspected Fields

Trigger Enable Delay

The amount of time to enable the trigger after the object has been enabled and the
rigidbody has stopped moving.

Pickup On Trigger Enter

Should the item be picked up when the character enters the trigger?

Rotation Speed

The amount that the object should rotate while waiting to be picked up.

Pickup Message Text

The text that should be shown by the message monitor when the object is picked up.

Pickup Message Icon

The sprite that should be drawn by the message monitor when the object is picked up.

https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/

| 279

Pickup Audio Clip Set

A set of AudioClips that can be played when the object is picked up.

Health Pickup
The Health Pickup object inherits the Object Pickup component and will replenish the
character’s health if it is low. The shield is replenished first and then any remaining health
amount will be used for the standard health. If the character’s health is not low then the
health pickup will only disappear if Always Pickup is enabled.

Setup

The Health Pickup can be setup by performing the following:

Open the Object Manager and create a new object of type Health Pickup.1.
Specify the amount of health that should be replenished when the object is picked up.2.
Place the prefab in your scene.3.

Inspected Fields

Health Amount

The amount of health to replenish.

Always Pickup

Should the object be picked up even if the object has full health?

Item Pickup
The Item Pickup object inherits the Object Pickup component and contains a list of Item
Identifiers and corresponding count that should be added to the inventory. This can be used
both for pickups within the scene or as a Drop Prefab specified by the Item. Drop Prefabs
are dropped by the character when the item is removed.

Setup

The Item Pickup can be setup by performing the following:

Open the Object Manager and create a new object of type Item Pickup or Dropped1.
Item.
If the Item Pickup type was selected then the picked up Item Definitions should be2.
specified within the Item Pickup component. A Dropped Item will automatically inherit
the Item Definitions that the character is carrying so no Item Definition need to be
specified.
Add the object to the scene or assign it to the Drop Prefab field of the Item component.3.

https://opsive.com/support/documentation/ultimate-character-controller/objects/object-pickup/
https://opsive.com/support/documentation/ultimate-character-controller/editors/objects/
https://opsive.com/support/documentation/ultimate-character-controller/objects/object-pickup/
https://opsive.com/support/documentation/ultimate-character-controller/editors/objects/

| 280

Inspected Fields

Always Pickup

Should the object be picked up even if the inventory cannot hold any more of the item?

Item Pickup Set

An array of items and ItemSets to pick up.

Item Definition Amounts

An array of Item Definitions to be picked up.

Trajectory Object
The Trajectory Object is the base component for any object that is projected from the
character.This can include a wide range of objects including rockets, arrows, grenades, or
shells. If the Trajectory component is added directly to the character then it can also show a
trajectory curve of the direction that the object will follow.

| 281

Visible Trajectory Curve Setup

The Trajectory Object component can optionally display a curve indicating where the object
is going to move towards when launched. This is a deterministic curve so the path will be
accurate for where the object lands. This curve can also be used within VR to show the
location that the first person player is going to teleport to.

Select the GameObject that you want the curve to affect. For our example we selected1.
the Nolan/Items/PrimaryFragGrenade GameObject since this curve should be
displayed by the ThrowableItem.
Add the following components:2.

Trajectory Object
Line Renderer
Capsule Collider. This component is optional and can be nothing, a Capsule
Collider, or Sphere Collider.This component will tell the Trajectory Object what
type of collisions to use (if no collider is added a standard raycast is used). The
Capsule Collider was chosen for this example because the frag grenade uses a
Capsule Collider.

The Trajectory Object values should match the values of the Trajectory Object that is3.
being used. For this example all of the default Trajectory Object values can be left
alone.
The following Line Renderer values should be changed:4.

Cast Shadows: Off
Receive Shadows: Disabled
Materials: your Line Renderer material
Positions: 0
Width: 0.15

| 282

The Capsule Collider values should match the Capsule Collider values on the object5.
being used (the frag grenade):

The final step is to enable the trajectory upon aim with the frag grenade.This can be6.
found under the Trajectory foldout of the ThrowableItem component:

Inspected Fields

Initialize On Enable

Should the component initialize when enabled?

Mass

The mass of the object. The mass affects the velocity, the larger the mass the less the
velocity.

| 283

Start Velocity Multiplier

A multiplier to apply to the starting velocity.This is useful for simulation when the trajectory
curve should account for any velocity that is added to the character when the object is being
thrown.

Gravity Magnitude

The amount of gravity to apply to the object. The gravity direction is determined by the
character’s up direction.

Speed

The movement speed of the object. This value is multiplied by the velocity to give the final
new position.A larger speed value is most useful if the trajectory curve is visible to reduce
the number of total positions.

Rotation Speed

The rotation speed of the object. This value is slerped between the original rotation and the
target rotation.

Damping

The damping value to apply to the movement.The higher the damping the quicker the object
will stop moving.

Rotation Damping

The damping value to apply to the rotation. The higher the damping the quicker the object
will stop rotating.

Rotate In Move Direction

Should the object rotate in the direction that the object is moving? This is useful for a bow
and arrow where the arrow should face in the movement direction.

Settle Threshold

When the velocity and torque have a square magnitude have a square magnitude value less
than the specified value then the object will be considered settled.Settled objects do not
update anymore and will not move/rotate.Set to 0 if the object should never settle.

Sideways Settle Threshold

Specifies if the collider should settle on its side or upright.The higher the value the more
likely the collider will settle on its side. This is only used for CapsuleColliders and
BoxColliders. This is useful for bullet shells when you want them to land upright.

| 284

Start Sideways Velocity Magnitude

Starts to rotate to the settle rotation when the velocity magnitude is less than the specified
values.

Impact Layers

The layers that the object can collide with.

Surface Impact

The identifier that is used when the object collides with another object. If the identifier is
null it can be overridden by the object initializing the trajectory object.

Force Multiplier

When a force is applied the multiplier will modify the magnitude of the force.

Collision Mode

Specifies how the object should behave after hitting another collider.

Collide: Collides with the object. Does not bounce.
Reflect: Reflect according to the velocity.
Random Reflect: Reflect in a random direction. This mode will make the object
nondeterministic but for visual only objects such as shells this is preferred.
Ignore: Passes through the object. A collision is reported.

Reflect Multiplier

Specifies the multiplier to apply to the reflectvelocity (if the object can reflect).

Max Collision Count

The maximum number of objects that the projectile can collide with at a time.

Max Position Count

The maximum number of positions any single curve amplitude can contain.This is only used
when the curve is being displayed.

Grenade
Grenades are Trajectory Objects that can destroy themselves after they collide with an
object or a set amount of time. They are thrown by the ThrowableItem component and can
explode in the character’s hand if they aren’t thrown fast enough.

Setup

A new grenade can be created by performing the following:

https://opsive.com/support/documentation/ultimate-character-controller/objects/trajectory-object/

| 285

Open the Object Manager and create a new object of type Grenade.1.
A Capsule Collider will be added to the shell by the Object Manager. A Sphere Collider2.
can also be used if the shell is more spherical.
Adjust the Grenade values to match the type of grenade. In most cases only the3.
Spawned Objects On Destruction value will need to be adjusted.
Assign the prefab to the Throwable Item that should throw it. This is assigned to the4.
Thrown Object field under the Throw foldout:

Inspected Fields

Sticky Layers

The layers that the object can stick to.

Destroy On Collision

Should the grenade be destroyed when it colliders with another object? Most grenades will
have this option set to false.

Destruction Delay

The amount of time after a collision that the object should be destroyed.

Spawned Objects On Destruction

The objects which should spawn when the object is destroyed. Each element within this
array has the following options:

Object: the object that should be spawned
Probability: the likelihood that the object will be spawned (0 – 1). A higher value
means it is more likely to be spawned.
Random Spin: should a random spin be applied to the object after it has spawned?

Lifespan

The length of time before the grenade destructs.

Pin

A reference to the pin that is removed before the character throws the object (can be null).

Magic Projectile
Magic Projectiles are Projectiles that work with Magic Items to perform the impact actions
when the projectile collides with another object.

https://opsive.com/support/documentation/ultimate-character-controller/editors/objects/
https://opsive.com/support/documentation/ultimate-character-controller/objects/trajectory-object/projectile/
https://opsive.com/support/documentation/ultimate-character-controller/items/actions/usable/magic/

| 286

Setup

A new projectile can be created by performing the following:

Open the Object Manager and create a new object of type Magic Projectile.1.
Add the Spawn Projectile Cast Action to the Magic Item.2.
Assign the prefab to the Projectile Prefab Cast Action:3.

Projectile
Projects are Trajectory Objects that can destroy themselves after they collide with an object
or a set amount of time. They are used for objects that are fired from the Shootable Weapon
component such as rockets or arrows.

Setup

A new projectile can be created by performing the following:

Open the Object Manager and create a new object of type Projectile.1.
Adjust the Projectile values to match the type of projectile. The most common values2.
that will be adjusted are Destroy On Collision and Spawned Objects On Destruction.
Assign the prefab to the Shootable Weapon that should fire it. This is assigned to the3.
Projectile field under the Firing foldout:

Impact Callback

When the projectile collides with another object the “OnObjectImpact” event will be sent
from the built-in Event System. A corresponding Unity event will also be sent. This event
allows you to add new functionality when the impact occurs without having to change the
class at all. The following example will subscribe to this event from a new component:

using UnityEngine;
using Opsive.Shared.Events;

https://opsive.com/support/documentation/ultimate-character-controller/editors/objects/
https://opsive.com/support/documentation/ultimate-character-controller/objects/trajectory-object/
https://opsive.com/support/documentation/ultimate-character-controller/editors/objects/
https://69.16.254.154/support/documentation/ultimate-character-controller/programming-concepts/events/
https://unity3d.com/learn/tutorials/topics/scripting/events

| 287

public class MyObject : MonoBehaviour
{
 /// <summary>
 /// Initialize the default values.
 /// </summary>
 public void Awake()
 {
 EventHandler.RegisterEvent<float, Vector3, Vector3,
GameObject, object, Collider>(gameObject, "OnObjectImpact", OnImpact);
 }

 /// <summary>
 /// The object has been impacted with another object.
 /// </summary>
 /// <param name="amount">The amount of damage taken.</param>
 /// <param name="position">The position of the damage.</param>
 /// <param name="forceDirection">The direction that the object
took damage from.</param>
 /// <param name="attacker">The GameObject that did the
damage.</param>
 /// <param name="attackerObject">The object that did the
damage.</param>
 /// <param name="hitCollider">The Collider that was hit.</param>
 private void OnImpact(float amount, Vector3 position, Vector3
forceDirection, GameObject attacker, object attackerObject, Collider
hitCollider)
 {
 Debug.Log(name + " impacted by " + attacker + " on collider "
+ hitCollider + ".");
 }

 /// <summary>
 /// The GameObject has been destroyed.
 /// </summary>
 public void OnDestroy()
 {
 EventHandler.UnregisterEvent<float, Vector3, Vector3,
GameObject, object, Collider>(gameObject, "OnObjectImpact", OnImpact);
 }
}

Inspected Fields

Sticky Layers

The layers that the object can stick to.

Destroy On Collision

| 288

Should the projectile be destroyed when it colliders with another object? A rocket will want
this option enabled but an arrow normally will not.

Destruction Delay

The amount of time after a collision that the object should be destroyed.

Spawned Objects On Destruction

The objects which should spawn when the object is destroyed. Each element within this
array has the following options:

Object: the object that should be spawned
Probability: the likelihood that the object will be spawned (0 – 1). A higher value
means it is more likely to be spawned.
Random Spin: should a random spin be applied to the object after it has spawned?

Lifespan

The length of time that the projectile should exist before it deactivates if no collision occurs.
This will prevent the object from existing forever if for example it is shot into the air and no
gravity is applied to it.

Shell
Shells are a Trajectory Object that will randomly bounce when they collide with another
object. Shells are for visuals only and are not synchronized across the network.

Setup

A new shell can be created by performing the following:

Open the Object Manager and create a new object of type Shell.1.
A Capsule Collider will be added to the shell by the Object Manager. A Sphere Collider2.
can also be used if the shell is more spherical.
Adjust any interested Shell values. In most cases the defaults are a good start.3.
Assign the shell to the Shootable Weapon that should eject it. This is assigned to the4.
Shell field under the Shell foldout:

Inspected Fields

Lifespan

Time to live in seconds before the shell is removed.

Persistence

Chance of shell not being removed after settling on the ground. This allows shells to be

https://opsive.com/support/documentation/ultimate-character-controller/objects/trajectory-object/
https://opsive.com/support/documentation/ultimate-character-controller/editors/objects/

| 289

removed early for to increase randomness.

Moving Platforms
The moving platforms are a generic term meaning any object that can be moved/rotated
within the scene. This includes elevators, trains, revolving doors, etc. The character can ride
on top of or get pushed around by these moving platforms.

Requirements

In order to stay properly synchronized with the character and camera the object must use
the Moving Platform layer:

The Moving Platform or Animator Update component must be added to your movable object.
The Moving Platform component should be used for any object that does not have an
Animator. The Animator Update component is then used with the Animator.

One of these scripts must be attached in order to prevent the character from jittering on a
moving platform. The Kinematic Object Manager updates the objects in a specified order to
allow for the smooth movement and without one of these scripts attached the Kinematic
Object Manager will not know the moving platform exists.

Moving Platform Component

The Moving Platform component allows the object to move or rotate along a given waypoint
path. An outline will show the shape of the object at each waypoint object, and a line will
connect the waypoints indicating the path that will be traversed.

Setup

Moving platforms can be setup by following:

Create a new empty GameObject that will act as the container for the actual moving1.
platform object and waypoints.
Add your platform that will actually move as a child of the GameObject created in step2.
1. The Moving Platform component and any colliders should be added to this
GameObject. This GameObject should be on the MovingPlatform.
Add any number of child GameObjects to the GameObject created in step 1. These3.
GameObjects will serve as the waypoints that the platform will traverse.
Each waypont should be specified in the Waypoints list under the Moving Platform4.
component.

| 290

Inspected Fields

Update Location

Specifies the location that the object should be updated:

Update: The object will be updated within Unity’s Update loop.
FixedUpdate: The object will be updated within Unity’s FixedUpdate loop.

Waypoints

The Waypoints that the moving platform will traverse. If no waypoints are set then the
object will not change positions. With each waypoint a delay and state name can be
specified along with the platform. The platform will stay at the waypoint for the specified
delay and activate specified state when the platform start to traverse towards that waypoint.

Direction

Specifies the direction that the platform should traverse.

Forward: Moves from the waypoint at the least index to the greatest index within the
waypoints array.
Backwards: Moves from the waypoint at the greatest index to the least index within
the waypoints array.

Movement Type

Specifies how the platform traverses through waypoints.

Ping Pong: Moves to the last waypoint and then back the way it came from.
Loop: Moves to the last waypoint and then directly to the first waypoint.
Target: Moves to the specified waypoint index.

Target Waypoint

Specifies the waypoint index to move towards if using the Target Movement Type.

Movement Speed

The speed at which the platform should move.

Movement Interpolation

Specifies how the platform should interpolate the movement speed.

Ease In Out: Gently moves into full movement and gently moves out of it at each
waypoint.
Easy In: Gently moves into full movement.
Ease Out: Moves into full movement immediately and gently moves out of full
movement at each waypoint.
Ease Out 2: Moves into full movement immediately and moves out of full movement

| 291

according to the movement speed.
Slerp: Uses Vector3.Slerp to move in and out of movement according to the movement
speed.
Lerp: Uses Vector3.Lerp to move in and out of movement according to the movement
speed.

Rotation Interpolation

Specifies how the platform should interpolate the rotation speed.

Sync To Movement: Rotates according to the movement speed.
Ease Out: uses Quaternion.Lerp to lerp the rotation based on a linear curve.
Custom Ease Out: Uses Quaternion.Lerp to lerp the rotation based on the Rotation
Ease Amount value.
Custom Rotate: Rotates according to the rotation speed.

Rotation Ease Amount

Specifies the amount to ease into the target rotation if using the Custom Ease Out Rotation
Interpolation mode.

Custom Rotation Speed

Specifies the rotation speed if using the Custom Rotate Rotation Interpolation Mode.

Max Rotation Delta Angle

The maximum angle that the platform can rotation. Set to -1 to have no max angle.

Character Trigger Layer

The layer of the character that can activate the moving platform.

Character Trigger State

The state name that should activate when the character enters the platform trigger. Note
that the platform must have a trigger collider in order for the state to be activated.

Enable On Interact

Should the moving platform wait to be enabled until it is interacted with? The Interact
ability can start the interaction.

Change Directions On Interact

Should the moving platform change directions when the Interact ability interacts with the
platform? The Interact ability can start the interaction.

Gizmo Color

The color to draw the editor gizmo in (editor only).

https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/interact/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/interact/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/interact/

| 292

Draw Debug Labels

Should the delay and distance labels be drawn to the scene view (editor only)?

Layer Manager
When the character is created one of the required components is the Character Layer
Manager. The Character Layer Manager specifies which layers the character should collide
with or ignore. When the Update Layers button is pressed the controller will add the
required layers to elements 26 – 31:

Layer 26 – Enemy: Used by the Crosshairs Monitor to determine if the target object is
an enemy.
Layer 27 – Moving Platform: Used by the Moving Platform component to indicate that
the character should automatically move with the object.
Layer 28 – Visual Effect: Used by shells, explosions, reloadingable clips, etc. Will not
cause collisions with the character.
Layer 29 – Overlay: Used while in first person mode using the standard render
pipeline, indicates which objects should be rendered first (such as the arms).
Layer 30 – SubCharacter: Child colliders of the character which do not affect collision
(such as ragdoll colliders).
Layer 31 – Character: The layer of the main character collider.

If you have existing layers that occupy those elements then you can manually change these
elements by modifying LayerManager.cs. Unfortunately because these layers have to be
static there isn’t a way to modify it without changing the source code. Ensure these layers
are updated before the character is built so the correct indices will be used.

Enemy Layers

Layer Mask that specifies the layer that the enemies use.

Invisible Layers

Layer Mask that specifies any layers that are invisible to the character (such as water or
invisible planes placed on top of stairs).

Solid Layers

Layer mask that specifies any layers that represent a solid object (such as the ground or a
moving platform).

An example use is for the collision detection by the character controller. The controller will
use the Solid Layers mask to determine what is considered the ground to prevent the
character from falling through the floor.

https://opsive.com/support/documentation/ultimate-character-controller/getting-started/setup/scene-setup/

| 293

Surface System

The Surface System is responsible for spawning effects caused by collisions and impacts. It
is designed to be dynamic, powerful, and useful in a board range of possible physics
situations.

Features Overview

Surface Effect System

Spawns random sounds, prefabs, and decals upon impact/collision with objects and
characters. To increase randomness sounds can have varying pitch, prefabs can have spawn
probability, and decals can have a random scale.

Decal Manager

Removes decals if they overlap with wall corners, and ages (weathers) remaining ones.
Decals can fade and rotate.

Character Foot Effects

Handles footstep and footprint effects with four footstep detection modes.

Texture Fallbacks

Allows you to identify surfaces depending on terrain or object textures. Supports mapping
UV regions within a texture.

Default Fallbacks

Determines the best effect to play in situations where the system doesn’t have information
about the impact or surface type.

Logic Overview

A Surface Impact and Surface Type trigger a Surface Effect.

The typical flow for an effect being generated is as follows:

A collision is caused by an object (such as the character or a projectile) with an1.
assigned Surface Impact.
A Surface Type is found based off of the collision object.2.
A Surface Effect is then retrieved which should be used base off of the Surface Impact3.
– Surface Type combination.
That Surface Effect finally spawns the particles, decals, objects, or sounds into the4.
scene.

Component Overview

The Ultimate Character Controller scene will have a Surface Manager, Decal Manager, and

| 294

Object Pool component generated when the Setup Scene button is pressed within the Setup
Manager. Surface Impact, Surface Type, and Surface Effect are ScriptableObjects created
at design time. Surface Identifier and Character Foot Effects are assigned to an object
within the scene.

Surface Manager

Contains fallback Surface Types derived from the textures of a target object. Also contains
default fallbacks for (potentially missing) impact and surface effects.

Decal Manager

Handles the fading out (weathering) of decals and smart removal of any badly placed decals.

Object Pool

Handles recycling of objects that are frequently destroyed and reused. Saves lots of memory
and is good for performance.

Surface Impact

Identifies the collision type for determining the Surface Effect. Typical Surface Impacts are
Bullet Hit, Fall Impact, Footstep, etc. If you’re coming from version 1 of UFPS this object
was previously known as vp_ImpactEffect.

Surface Type

Identifies the surface of the object that was hit by the Surface Impact.

Surface Effect

A recipe for a group of effects which should be spawned in response to a certain type of
collision.

Surface Identifier

Associates scene colliders with Surface Types. Attaches to any and all scene object which
can be static or moving. One per collider.

Character Foot Effects

Attaches to the character and handles the footstep and footprint effects.

Surface Manager
The Surface Manager component can be used to trigger effects depending on the object
texture, thus reducing the need for assigning a Surface Identifier to every GameObject in
the scene. It also has default fallbacks for (potentially missing) Surface Impact and Surface
Types.

| 295

The Surface Manager will try to determine the Surface Type of the object hit from various
sources including single textures, textures among multi-materials, and terrain textures. It is
also possible to define UV regions for textures inside the inspector (for atlas maps).

Object Surfaces

Click on the plus symbol of the reorderable list in order to add a new Object Surface. The
Surface Type should be assigned along with a list of textures that correspond to that
Surface Type.

The UV field allows for the surface to be restricted within a rectangular region inside a
texture. The Object Surface element higher in the list will be selected if two Object Surfaces
share the same texture and having overlapping UVs. If you want to have several surfaces
inside a single texture then you should add that texture to each Object Surface Element.

Fallbacks

These fallbacks will be used when the system cannot determine the Surface Impact or
Surface Type involved in an impact. Examples where this can happen include when a
projectile does not have it’s Surface Impact set, or an impacted object does not have either
a Surface Identifier or a texture fallback.

Fallbacks are very powerful as they allow you to provide rough behavior for all of the
surfaces in your game with all of the effect combinations accounted for with an absolute
minimum amount of work.

| 296

Fallback Surface Impact

The Surface Impact will be used when the Surface Impact is unknown (such as if a footstep
or a projectile has no Surface Impact). This fallback will apply to all cases when the Surface
Impact is unknown, unless a Surface Type has a Surface Effect assigned for its fallback.

Fallback Surface Type

The Surface Type will be used when the Surface Type is unknown (such as when an object
has no Surface Identifier and there are no object or terrain Surface Types). Your fallback
surface can be one of the existing surfaces, but it is important that all of the Surface
Impacts are hooked up to a Surface Effect, including the Fallback Surface Impact.

Fallback Allow Decals

When Allow Decals is false (recommended) the default fallbacks will not be able to spawn
decals, even if the Surface Effect has them. This will prevent fallback decals that don’t fit
well with the target surface.

Stretched Decals

When a decal is added to an object it can be set to the child of that object. Due to Unity
engine internals, childing a decal to an object with a non-uniform scale (meaning the x, y,
and z scale are not identical) will result in decals that are strangely stretched/warped.
Because of this objects that are non-uniform will only receive decals if the Allow Non
Uniform Decals toggle is true within the Decal Manager.

The warping of the decals may be very slight and acceptable if the object has only slight
scale deviations on one or more axes. If the scale deviations are considerable then the
decals will start to look very deformed when they are parented. There are three
workarounds for this:

The target object should be marked as static if it will never move or be destroyed at1.
runtime. This will allow all decals to appear normal on the surface even though they
aren’t actually parented to the object.
The Allow Non Uniform Decals option on the Decal Manager can be deselected to2.
prevent decals from every being parented to a non-uniform object.
A Surface Identifier can be added to control if decals should spawn on a per-object3.
basis. The Allow Decals option can be deselected within the Surface Identifier which
will prevent decals from being parented to that object.

Surface Impacts
The Surface Impact Scriptable Object is used to identify different collision types for surface
effect purposes. It declares (by filename) a particular type of collision that will be used to
trigger effects when sent to a collider that has a Surface Type.

Example Surface Impacts are bullet hit, melee impact, fall impact, footstep, etc. When a
bullet hits a rock, the Surface Impact is what makes the Surface Manager spawn sparks,

| 297

dust, and a ricochet sound instead of footstep effects. This is achieved by binding the
Surface Impact object to a Surface Effect object by an encompassing Surface Type object.

The Surface Impact script doesn’t actually do anything. It is just used as an identifier object
for a certain type of impact. Of course, at runtime the Surface Impact object plays a very
important within the larger Surface System.

Creating a new Surface Impact

A new Surface Impact can be created from the Assets -> Create -> Ultimate Character
Controller -> Surface Impact menu option. This menu is also available when you right click
within the project view. However, you may find it easier to just duplicate an existing effect.

After you have created a new Surface Impact it must be assigned in at least two places:

The object that is actually using the Surface Impact, such as the bullet, footstep, or1.
ability.
A Surface Type object which binds a Surface Impact to a Surface Effect. Alternatively2.
the Surface Impact can be set as the default Fallback on the Surface Manager
component.

Fallback Surface Impact

You can set a scene-wide fallback Surface Impact within the Surface Manager – Fallbacks
foldout. This can be used for cases where the Surface Impact is unknown (such as if a
Surface Impact wasn’t set on a bullet component).

Surface Types
The Surface Type Scriptable Object is the main surface concept. Surfaces will trigger effects
in response to projectiles, abilities, footsteps, and potentially many other things. Every
surface has a list of Impact Effects that bind a Surface Impact to a particular Surface Effect.
There should be an element representing each type of collision effect response that you
want to cover.

Impact Effects

The Impact Effects array lists all of the Surface Impacts that are used by this Surface Type.
Any Surface Impact which should trigger a Surface Effect should be listed here. Elements
can be added or removed to the array by increasing or decreasing the size value. Remember
that the last element(s) will be removed if you decrease the size value.

Surface Impact and Surface Effect

Whenever an impact occurs the Surface Manager looks for a particular Surface Type and
Surface Impact which match. If the Surface Manager cannot find a Surface Type and
Surface Impact that match then the Surface Manager will try to come up with a good
fallback. The resulting Surface Effect is then triggered.

| 298

Creating a new Surface Type

A new Surface Impact can be created from the Assets -> Create -> Ultimate Character
Controller -> Surface Type menu option. This menu is also available when you right click
within the project view. However, you may find it easier to just duplicate an existing type.

Fallback Surface Type

When the Impact Type is unknown a fallback Surface Type can be used. This is set within
the Surface Manager under the Fallback foldout.

Recommended Usage

It is recommended that most of your scene prefabs have a Surface Identifier component
with the Surface Type assigned to them. This is the most performant way for the Ultimate
Character Controller to look up a surface. When a Surface Effect needs to be played the
Ultimate Character Controller will have the Surface Type instantly if it has been added to a
Surface Identifier. This prevents the Surface Manager from having to search for a Surface
Effect that is the best match.

Surface Effects
The Surface Effect Scriptable Object is the recipe for a bunch of different effects to be
played in response to a certain type of collision.It might trigger when a bullet hits a wall,
when a character places a footstep, or when the player falls violently to the ground.

Each Surface Effect contains the object references and logic for a simple one-shot effect.
When triggered it can play a random sound from a list, spawn a set of prefabs (according to
random probabilities), or select a randomly scaled decal.

It is important to understand that a Surface Effect object is never spawned in the scene.
Instead, it is triggered and responds play playing sounds and spawning other prefabs. The
Surface Effect object doesn’t exist at the scene level, but at the project level.

Creating a new Surface Effect

A new Surface Effect can be created from the Assets -> Create -> Ultimate Character
Controller -> Surface Effect menu option.This menu is also available when you right click
within the project view. However, you may find it easier to just duplicate an existing type.

Inspected Fields

Spawned Objects

A list of objects that can be spawned when the Surface Effect is triggered.Each element will
be spawned based on a probability value.

Object

Represents the prefab that is attempted to be spawned. This is perfect for particle effects

| 299

and rubble prefabs!

Probability

A value of 1 means the prefab will always spawn when the Surface Effect is triggered.A
value of 0 means that it will never spawn.

Random Spin

A boolean indicating if a random spin should be applied to the spawned object. If enabled a
random rotation will be applied relative to the object’s normal direction.

Decals

Lists the decals that can be spawned as a result of the effect.Only one decal will be
randomly chosen out of the list.

Prefabs

A list of decal prefabs that can be spawned. All decal prefabs are assumed to have a
MeshFilter and MeshRenderer on their main Transform with a class 2-triangle quad(normal
aligned with the Z-vector). The overlap detection features of the Decal Manager require this
type of decal.

Min & Max Scale

Multiplies the local XY scale by a random value inside this range when a decal is
spawned.The local Z scale is not affected.

Allowed Decal Edge Overlap

With zero overlap any decals that overlap the corner of a wall in the slightest bit will be
removed. When the overlap is at its max value (0.5) the decals are allowed to overlap
corners all of the way to their center. This feature only works if the scene has a Decal
Manager component with Placement Tests enabled.

Audio

When the effect triggers one Audio Clip from the list will be chosen and played.

Audio Clips

A list of Audio Clips that can be played by the Audio Manager when the effect is triggered.

Min & Max Volume

The sound will be played as-is if both the min and max volume values are equal to 1. Any
other values will cause the volume of the clip to be modified by a random value inside the
range.

| 300

Min & Max Pitch

The sound will be played as-is if both the min and max pitch values are equal to 1. Any other
values will cause the pitch of the clip to be modified by a random value inside the range.

One Clip Per Frame

Enable this boolean to avoid excessive sound volume on impact with effects that trigger
many times at once (such as shotgun pellets).

Random Clip Selection

Should a random clip be selected out of the Audio Clip list? If false then the clips will be
selected sequentially.

State

When an effect is triggered it can optionally enable the state on the object that was hit.

State Name

The name of the state that should be triggered when the object is hit. This is useful if for
example you’d like to make an enemy move in slow motion when being shot by a gun which
affects the time scale of objects.

State Disable Timer

The number of seconds until the state name is disabled. A value of -1 will require the state
to be manually disabled at a later point in time.

Surface Identifiers
The Surface Identifier component is used to determine what effect should be triggered from
the surface of an object when hit by a Surface Impact. It is recommended that you rely on
Surface Identifies first and foremost when making your game. You should only resort to the
more advanced Surface Manager features for special cases like terrains and multiple
material objects. This is for both performance reasons and if you make it a habit to place
Surface Identifiers on all of your scene prefabs they will “just work” as you’d expect.

Surface Type

The Surface Type determines what the object’s surface is made of, and what Surface Effect
will trigger when it gets hit by a Surface Effect.

Allow Decals

If enabled then bullet holes and footprints can stick to the surface of the object. It will
override any Surface Manager settings for this specific object. This is useful for objects that
have colliders that do not perfectly follow the shape of the object and thus would otherwise
get bad decal placement.

| 301

Decal Manager
The Decal Manager is responsible for managing the spawned decals. The number of decals
can be capped at a limit to prevent too many from being spawned. The decals can then
slowly be faded (weathered) for a smooth transition rather than the decal just popping out
of existence.

Decal Limit

The maximum number of decals that can spawn. As new decals appear the older ones are
weathered and eventually remove.

Weathered Decal Limit

Specifies how many of the oldest decals will be gradually faded away a tiny bit each time a
new decal is spawned. The oldest of the decals will be almost invisible before it is removed.

Weathering is based on the number of decals in the scene and the order in which the decals
were created rather than on game time. Every time a new decal is placed the oldest of the
decals will be weathered. If no decals are placed and a decal is 50% weathered then it will
stay in the world indefinitely.

Remove Fadeout Speed

The speed that the decals should fadeout after they have been removed from being
weathered.

Character Foot Effects
The Character Foot Effects component will determine when a new footstep has occurred.
The footstep is detected based on the footstep mode and when a footstep occurs the Surface
Effect based on the Surface Impact will play.

Surface Impact

The Surface Impact used to identify the footstep.

Feet

An array of Transforms specifying the location of each of the character’s feet. The Character
Manager will automatically fill in this array for humanoid characters

Footstep Mode

Specifies how the footsteps are detected:

Body Step: Footsteps are determined by the vertical height of the character’s foot.
When the foot’s Transform position is below the vertical Foot Offset value relative to
the character’s position then a footstep has occurred. This is the most realistic mode

| 302

however note that results are very dependent on the quality of your animations and
tweaking a good foot offset to go along with it.
Trigger: Footsteps will be placed when the foot Transform enters a trigger. This mode
requires the FootstepTrigger component to be added to each foot Transform. When
Unity calls the OnTriggerEnter method the FootstepTrigger component will notify the
CharacterFootstep component that a footstep has occurred. Note that the feet array is
not used when the mode is set to the trigger type.
Fixed Interval: Footsteps will be placed according to a timer, and the horizontal foot
position will be used to place footprint effects at ground level. Each foot will trigger
effects whether touching the ground or not (this is hardly noticeable since feet are
usually fairly close to the ground and moving fast). In this mode you’ll want to create
separate states with custom intervals to differentiate between walking, running, or
crouching.
Camera Bob: Footsteps will be placed when the camera bob dips (reaches the lowest
point and then ascends again). This mode is most useful for first person mode and
requires the camera to have bob motion enabled.

Footstep Volume

The volume of the footstep sound.

Move Direction Frame Count

If using the BodyStep mode, specifies the number of frames that the foot must be moving in
order for it to be checked if it is down.

Foot Offset

Specifies an offset for when a raycast is cast to determine if the character’s foot is
considered down.

Interval

If using the FixedInterval mode, specifies how often the footsteps occur (in seconds) when
the character is moving.

Min Bob Interval

If using the CameraBob mode, specifies the minimum time that must elapse before another
footstep occurs.

Advanced Surface System Topics
Surface Manager

Fallback Logic

If there is no Surface Impact but there is a Surface Type then the fallback Surface
Impact will be used with the detected surface.

| 303

If there is no Surface Type but there is a Surface Impact then the detected Surface
Impact will be used with the fallback Surface Type.
If there is no Surface Impact or Surface Type then the fallback Surface Impact will be
used with the fallback Surface Type.

Limitations

For performance reasons the surface system relies heavily on caching. Because of this
you cannot:

Manipulate the Surface Manager at runtime.
Change surface settings at runtime.
Manipulate hierarchies of any target object at runtime.

Due to Unity engine internals, childing a decal to an object with a non-uniform scale
(the x, y, and z scales are not identical) will result in decals that are strangely
stretched/warped on such objects.
UV regions on atlas textures do not work with Unity’s default primitives (cube, sphere,
capsule, etc). It will only work on objects with a Mesh Filter and Mesh Renderer.
UV regions on atlas textures do not work on static objects.
Surface detection will not work if the collider is not static and the renderer is static.
Surface detection will not work with multiple materials in the following scenarios:

If the Renderer is static. This is because Unity merges the meshes of all of the
static objects into a single mesh. Unfortunately, you must either make the
renderer non-static or split the object into separate, single material static objects
and assign the Surface Identifier to each.
If the GameObject has a Mesh Collider. This is because Unity creates separate
meshes for each material under-the-hood when rendering. The Renderer and
Collider must share the same logical mesh for Surface Effects to work with Mesh
Colliders.

Troubleshooting

A level geometry exists whose material / shader does not have a texture. How
should it be associated with a surface?

Add the Surface Identifier component to the object.

My fallback Surface Impact or Surface Type doesn’t work.

Ensure there is not a Surface Identifier on the object. This will override all fallback settings.

A Surface Identifier is on the object but it doesn’t work.

Verify that you have assigned a Surface Type.1.
If you want to received decals, verify that Allow Decals is enabled on the Surface2.
Identifier.
Verify that there is only one Surface Identifier on the object.3.
Verify that the object has a uniform scale.4.

Surface Effects don’t work on static, multi-material / atlas map objects

| 304

This is a very unfortunate limitation due to Unity architecture. When you mark an object as
rendering static then Unity will merge the meshes together in a way that prevents the
surface system from deriving material info / texture coordinates for effect spawning. At the
time of writing there are three known solutions to the problem:

Make the object non-static. This may be an acceptable solution if it’s not for all level
geometry but just a few objects.
Place invisible, static colliders above floors or walls with a certain texture and assign a
Surface Manager to the invisible object.
Don’t use multi-material objects, instead break the objects into separate, static objects.

Spawn System

Respawner
The Respawner component will respawn the object when the object dies or is destroyed. The
object can either spawn at the current location, the starting location, or can use the spawn
point system to determine where to spawn.

Inspected Fields

Positioning Mode

Specifies the location that the object should spawn:

None: The object will not change locations when spawning.
Start Location: The object will spawn in the same location as the object started in.
Spawn Point: The object will use the Spawn Point system to determine where to
spawn.

Grouping

The grouping index to use when spawning to a spawn point. The grouping will be ignored if
the value is -1. Groupings can be used in the case of having multiple teams. As an example,
consider a team deathmatch game where the red team has a grouping value of 0 and the
blue team has a value of 1. When a player on the red team goes to spawn only the Spawn
Points with a grouping value of 0 will be used to decide if the player can spawn in that
location.

Min Respawn Time

The minimum amount of time before the object respawns after death or after being
disabled.

Max Respawn Time

The maximum amount of time before the object respawns after death or being disabled.

| 305

Schedule Respawn On Death

Should a respawn be scheduled when the object dies?

Schedule Respawn On Disable

Should a respawn be scheduled when the component is disabled?

Respawn Audio Clip Set

A set of AudioClips which can be played when the object is respawned.

Events

When the object respawn occurs the “OnRespawn” event will be sent from the built-in Event
System. A corresponding Unity event will also be sent. The following example will subscribe
to this event from a new component:

using UnityEngine;
using Opsive.Shared.Events;

public class MyObject : MonoBehaviour
{
 /// <summary>
 /// Initialize the default values.
 /// </summary>
 public void Awake()
 {
 EventHandler.RegisterEvent(gameObject, "OnRespawn",
OnRespawn);
 }

 /// <summary>
 /// The object has respawned.
 /// </summary>
 private void OnRespawn()
 {
 Debug.Log(name + " Respawned.");
 }

 /// <summary>
 /// The GameObject has been destroyed.
 /// </summary>
 public void OnDestroy()
 {
 EventHandler.UnregisterEvent(gameObject, "OnRespawn",
OnRespawn);
 }
}

https://opsive.com/support/documentation/ultimate-character-controller/programming-concepts/events/
https://opsive.com/support/documentation/ultimate-character-controller/programming-concepts/events/
https://unity3d.com/learn/tutorials/topics/scripting/events

| 306

Spawn Points

| 307

The Spawn Point component is used to determine the location that the object can spawn. A
shape can be defined by the component and this shape is used to determine where within
the bounding area the object should spawn.

Grouping

An index value used to group multiple sets of spawn points. The grouping will be ignored if
the value is -1. Groupings can be used in the case of having multiple teams. As an example,
consider a team deathmatch game where the red team has a grouping value of 0 and the
blue team has a value of 1. When a player on the red team goes to spawn only the Spawn
Points with a grouping value of 0 will be used to decide if the player can spawn in that
location.

Shape

Specifies the shape of the spawn point (a sphere or a box).

Point: The spawn point will be determined at the transform position.
Sphere: The spawn point will be determined within a random sphere.
Box: The spawn point will be determined within a box.

Size

The size of the shape. If the shape is a sphere this size will be the radius, and for a box it is
the local x and z extents. The height of the box is determined by the Ground Snap Height.

| 308

Ground Snap Height

Specifies the height of the ground check. When the object is spawned a ground check will
be used to ensure the character spawns on the ground and not in the air.

Random Direction

Should the character spawn with a random y direction?

Check For Obstruction

Should a check be performed to determine if there are any objects obstructing the spawn
point?

Obstruction Layers

Specifies the layers which can obstruct the spawn point. These layers are used for both for
ground snapping and the obstruction check.

Placement Attempts

If checking for obstruction, specifies how many times the location should be determined
before it is decided that there are no valid spawn locations.

Gizmo Color

The color to draw the editor gizmo in (editor only).

Audio
The Audio Manager is a singleton component which manages audio playback. The
advantages of having this component rather then playing an audio clip directly on an Audio
Source are:

Allows multiple clips to be played at the same time without one clip stopping another
clip from playing.

Allows clips to continue playing even if the object is disabled.

Allows for easier integration with other assets.

Your workflow doesn’t need to change when you are using the Audio Manager component. If
you add an Audio Source to your GameObject the Audio Manager will use the properties
from that Audio Source automatically. If a new Audio Source needs to be added to the
GameObject it will also use the correct properties.

| 309

The Audio Manager works with the following components in order to offer flexibility over
how audio is played:

Audio Config

The Audio Config defines how an Audio Clip should be played. The Audio Config allows you
to define the settings for that specific audio call. As an example, using the Audio Config you
can specify the order that the audio clips are played or which Audio Source should play the
audio clip. If an Audio Config is specified the clips from the Audio Config will be used
instead of the clips specified within the component inspector. New Audio Config files can be
created from the Create -> Opsive -> Audio menu item.

Audio Clips

An array of Audio Clips that can be played.

Clip Selection

Specifies the element that should be selected within the Audio Clips array.

Random: A random location within the array.

Sequence: Loops from the first to the last array element.

Index: Specify the index of the clip to play, defaults to 0. This index can be changed by
setting the AudioClipIndex property.

Audio Source Prefab

Prefab which contains the Audio Source that should play the audio.

Share Audio Source

Can the Audio Source be shared between multiple Audio Clips?

Replace Previous Audio Source

Should the Audio Source be replaced by a new Audio Source?

Audio Modifier

Optionally specify the Audio Modifier for the Audio Config.

| 310

Audio Modifier

The Audio Modifier allows the playing settings of an Audio Clip to be overridden at runtime.
For example, the Audio Modifier can change the Audio Clip’s volume or the pitch. If no
override is specified then the default settings on the Audio Source will be used.

Volume Override

Allows the volume to be overridden.

Pitch Override

Allows the pitch to be overridden.

Delay Override

Allows the audio delay to be overridden.

Loop Override

Allows the audio loop to be overridden.

Output Override

Allows the audio output to be overridden.

Audio Clip Set

The Audio Clip Set contains the Audio Config and array of Audio Clips which belong to the
set. If an Audio Config is specified then the Audio Clip array will not be used. If the Audio
Clip array is used a new clip will be randomly selected out of the list.

Audio Manager Module

The Audio Manager Module is a lightweight object that organizes a group of Audio Sources
by the Audio Config and GameObject. The Audio Manager Module can be specified on the
Audio Manager and allows for a default Audio Config to be used if no Audio Configs are
specified when the audio is played. The Audio Manager Module is also able to redirect the
output of the Audio Mixer Group.

API

The AudioManager exists in the Opsive.UltimateCharacterController.Audio namespace and
the most common methods that you will use are:

// <summary>
// Plays the clip on the GameObject. The AudioManager will find the
next available Audio Source on the specified GameObject.
// </summary>
Play(GameObject gameObject, AudioClip clip)

| 311

// <summary>
// Plays the clip on the GameObject with the specified delay. The
AudioManager will find the next available Audio Source
// on the specified GameObject.
// </summary>
PlayDelayed(GameObject gameObject, AudioClip clip)

// <summary>
// Stops playing the clip on the Audio Source at the reserved index.
// </summary>
Stop(GameObject gameObject)

Programming Concepts

Events
The EventHander adds a generic event system to the character controller. This system is
preferred internally over Unity’s event system because it doesn’t allocate any garbage when
executing. It is also easier to extend and events can be bound to a specific object or can be
executed globally. As with any robust event system, multiple objects can be subscribed to
the same event. The following method definition is used to listen for an event:

EventHandler.RegisterEvent(object obj, string name, Action handler)

This function is overloaded so events with up to five parameters can also be sent:

EventHandler.RegisterEvent<int>(object obj, string name, Action<int>
handler)

Unregistering from an event is very similar to registering for an event:

EventHandler.UnregisterEvent<int>(object obj, string name, Action<int>
handler)

An event can then be executed with:

EventHandler.ExecuteEvent(object obj, string name)

If the event is a global event then the first parameter (object obj) is omitted. As an example
lets have an object listen for the “OnDeath” event. The entire component looks like:

using UnityEngine;
using Opsive.Shared.Events;

public class MyComponent : MonoBehaviour
{
 public void Awake()
 {
 // Register for the event when the component starts. The event

| 312

registers with the local GameObject (the first parameter) so
 // the component must be added to the same GameObject as the
object that is sending the "OnDeath" event.
 EventHandler.RegisterEvent<Vector3, Vector3,
GameObject>(gameObject, "OnDeath", OnDeath);
 }

 /// <summary>
 /// Receives the "OnDeath" event.
 /// </summary>
 private void OnDeath(Vector3 position, Vector3 force, GameObject
attacker)
 {
 Debug.Log("The object died");
 }

 public void OnDestroy()
 {
 // Unregister from the event when the component is no longer
interested in it. In this example the component is interested for the
lifetime of
 // the component (Awake -> OnDestroy).
 EventHandler.UnregisterEvent<Vector3, Vector3,
GameObject>(gameObject, "OnDeath", OnDeath);
 }
}

Event Names
Here is a list of all EventHandler events that the controller uses, along with a brief
description of what each event is used for and its parameters, if it has any:

Event Name Parameters Description

OnAbilityMessageCanStart Ability ability, bool
canStart

The ability can start or no
longer stop.

OnAbilityUnequipItemComplete Item item, int slotID The item has been unequipped
from the slot slotID.

OnAbilityWillEquipItem Item item, int slotID The item will be equipped in
the slot slotID.

OnAddCrosshairsSpread bool start, bool
fromRecoil

The crosshair spread should be
started/stopped, either from
recoil or set to max spread.

OnAddSecondaryCameraForce
Vector3 positionalForce,
Vector3 rotationalForce,
float restAccumulation

Adds a secondary positional
and rotational force to the
ViewTypes.

OnAddSecondaryForce

int slotID, Vector3
positionalForce, Vector3
rotationalForce, bool
globalForce

Adds a positional and rotational
force to the IK target.

OnAimAbilityAim bool aim The aim ability is/is not aiming.

| 313

OnAimAbilityStart bool aim, bool inputStart

The aim ability was
started/stopped. inputStart
describes whether it was
started/stopped from user
input.

OnAnimatorSnapped The animator has been
snapped.

OnAnimatorWillSnap The animator will snap.

OnAnchorOffsetUpdated The camera’s anchor offset
value has been changed.

OnAttributeModifierAutoUpdateEnabled
AttributeModifier
attributeModifier, bool
enable

The attributeModifier‘s
auto-update has been
enabled/disabled.

OnAttributeReachedDestinationValue An attribute has reached its
destination value.

OnAttributeUpdateValue Attribute attribute The attribute‘s value has
been changed.

OnCameraAttachCharacter GameObject character The character has been
attached to the camera.

OnCameraChangePerspectives bool
firstPersonPerspective

The camera has swithced
between first and third person
perspectives.

OnCameraChangeViewTypes ViewType viewType, bool
activate

The viewType was
activated/deactivated.

OnCameraRotationalForce Vector3 force Add the rotational force to the
camera.

OnCameraWillChangePerspectives bool
firstPersonPerspective

The camera will switch between
first and third person
perspectives.

OnCameraZoom bool zoom The camera has zoomed in/out.

OnCharacterAbilityActive Ability ability, bool
active

The ability has been
activated/deactivated.

OnCharacterActivate bool active The character itself has been
activated/deactivated.

OnCharacterAttachCamera CameraController
cameraController

The cameraController has
been attached to the character.

OnCharacterAttachLookSource ILookSource lookSource The ILookSource has been
attached to the character.

OnCharacterChangeMovementType MovementType movementType
The character’s movement type
will be changed to
movementType.

OnCharacterChangeMovingPlatforms Transform platform
The character has been
attached to the moving
platform.

OnCharacterChangePerspectives bool
firstPersonPerspective

The camera will switch between
first and third person
perspectives.

OnCharacterChangeTimeScale bool value The character’s time scale will
be changed to value.

OnCharacterChangeUpdateLocation UpdateLocation
updateLocation

The character’s update location
will be changed to the specified
updateLocation.

OnCharacterDestroyed
The Ultimate Character
Locomotion component has
been destroyed.

OnCharacterEnterUIZone bool inUIZone
The character has
entered/exited a zone which
should show the UI and cursor.

OnCharacterForceIndependentLook bool independentLook

Independent look will be
enabled/disabled on the
character to allow the ability to
have control over rotation.

| 314

OnCharacterGrounded bool grounded The character’s grounded state
has changed to grounded.

OnCharacterImmediateTransformChange bool snapAnimator
The character’s transform
position/rotation has been
immediately changed.

OnCharacterIndependentFade bool enable, bool
revertFade

Another object has started or
stopped taking control of the
character fade.

OnCharacterItemAbilityActive ItemAbility itemAbility,
bool active

The itemAbility has been
activated/deactivated.

OnCharacterLand float height The character has landed from
height.

OnCharacterLean
float distance, float
tilt, float
itemTiltMultiplier

The character is leaning the
specified distance and tilt
amount.

OnCharacterMoving bool moving The character has either
started or stopped moving.

OnCharacterSnapAnimator
The character’s animator
should be snapped to match its
current state.

OnDeath Vector3 position, Vector3
force, GameObject attacker

An object with the Health
component has died. See
OnHealthDamage.

OnEnableGameplayInput bool enable Gameplay input should be
enabled/disabled.

OnEquipUnequipItemSetIndexChange int itemSetIndex The active ItemSet index has
changed to itemSetIndex.

OnEquipUnequipVerifyUnequipItem int itemSetCategoryIndex,
int slotID

Verify that the unequipping
item specified by the
itemSetCategoryIndex in
the slot slotID still needs to
be unequipped.

OnFirstPersonPerspectiveActivate
FirstPersonPerspectiveItem
perspectiveItem, bool
active

The first person perspective
item has been
activated/deactivated.

OnHealthDamage

float amount, Vector3
position, Vector3 force,
GameObject attacker,
Collider hitCollider

Damage has been applied to the
Health component.

OnHealthHeal float amount The Health component has
been healed by amount.

OnHeightChangeAdjustHeight float heightAdjustment
The character’s height has been
adjusted by the specified
amount.

OnInputControllerConnected bool controllerConnected A controller has been
connected/disconnected.

OnInventoryAddItem Item item The item has been added to
the inventory.

OnInventoryAdjustItemIdentifierAmount
IItemIdentifier
itemIdentifier, int
remaining

The amount of the item
itemIdentifier has been
adjusted, leaving remaining of
that item left.

OnInventoryEquipItem Item item, int slotID The item in slot slotID has
been equipped.

OnInventoryPickupItem
Item item, int amount,
bool immediatePickup, bool
forceEquip

The amount of item has been
picked up and will/will not be
picked up immediately and
forcefully equipped.

| 315

OnInventoryPickupItemIdentifier

IItemIdentifier
itemIdentifier, int
amount, bool
immediatePickup, bool
forceEquip

The amount of item
itemIdentifier has been
picked up and will/will not be
picked up immediately and
forcefully equipped.

OnInventoryRemoveItem
OnInventoryRespawned The inventory has respawned.

OnInventoryUnequipItem Item item, int slotID The item in slot slotID has
been unequipped.

OnItemPickupStartPickup An ItemPickup has been started
to be picked up.

OnItemPickupStopPickup An ItemPickup has been
stopped to be picked up.

OnItemSetIndexChange int categoryIndex, int
itemSetIndex

The ItemSetManager has
changed the category
categoryIndex‘s active
ItemSet index to
itemSetIndex.

OnItemSetManagerUpdateItemSet int categoryIndex, int
itemSetIndex

Updates the currently active
item set in the category
categoryIndex to
itemSetIndex.

OnItemSetManagerUpdateNextItemSet
int categoryIndex, int
prevItemSetIndex, int
itemSetIndex

Updates the next item set in
category categoryIndex,
including the previous and next
item set indices.

OnItemShowFullScreenUI int fullScreenUIID, bool
showFullScreenUI

Shows/hides the full screen UI
object based on its UI ID.

OnItemStartUse IUsableItem item, bool use The item is starting/stopping
use.

OnItemTryReload

int slotID,
IItemIdentifier
consumableItemIdentifier,
bool immediateReload, bool
equipCheck

The item at slot slotID is
trying to reload using
consumableItemIdentifier.

OnItemUpdateDominantItem Item item, bool
dominantItem

Sets the item as the
dominant/not dominant item.

OnItemUseConsumableItemIdentifier
Item item, IItemIdentifier
consumableItemIdentifier,
int remaining

The item has consumed some
amount of
consumableItemIdentifier,
leaving remaining of those
left.

OnMagicItemCast Item item The magic item has cast an
action.

OnMagicItemImpact Item item, SurfaceImpact
surfaceImpact

The magic item has collided
with a surface.

OnMagicItemStartStopBeginEndActions Item item, bool
beginActions, bool start

A magic item‘s begin/end
actions have been
started/stopped.

OnNextItemSet Item item, bool
unequipOnFailure

The item wants to change to
equip the next item from the
item set.

OnObjectImpact

float amount, Vector3
position, Vector3
forceDirection, GameObject
attacker, object
attackerObject, Collider
hitCollider

An object has been impacted by
another object. Used by
Projectile, ShootableWeapon
and MeleeWeapon.

OnObjectPickedUp ObjectPickup objectPickup The objectPickup has been
picked up.

OnRespawn The object has respawned.

| 316

OnShieldImpact Shield shield, object
source

The shield has been impacted
by object.

OnShootableWeaponShowProjectile GameObject projectile,
bool show

The ShootableWeapon
ItemAction has shown or
hidden a projectile.

OnShowUI bool show The UI should be shown/hidden.

OnStateChange
GameObject gameObject,
string stateName, bool
active

The gameObject has
activated/deactivated the
stateName state.

OnStoredInputAbilityResetStoredInputs Resets the ability’s stored user
inputs.

OnTryRecenterTracking
VR only – The camera’s rotation
has changed, so tracking
recentering should occur.

OnUseAbilityStart bool start, Use useAbility The specified useAbility has
been started/stopped.

OnUseAbilityUsedItem IUsableItem item The Use ability has used item.
OnWillRespawn The object will respawn.

Scheduler
The Scheduler allows for delayed execution of methods. As you are going through the code
you’ll see that this is used in many ways, from scheduling when a projectile should
deactivate to checking that a controller is connected. The scheduler also accepts up to three
parameters if the calling method requires it. When a new method is scheduled to occur in
the future a ScheduledEventBase object is returned. This object allows you to cancel events
before they are scheduled to occur.

An event can be scheduled with:

Scheduler.Schedule(float delay, Action action)

Where delay specifies the number of seconds that the action should execute. If a value of -1
is supplied for the delay then the event will be executed every frame. This is extremely
useful when you want to update a particular method without having to manually update it
within the standard MonoBehaviour loop. A great use case of this is the Spring system and it
ticking every frame.

When the event in the above example is executed it is executed within Unity’s Update loop.
If instead you’d like the event to be executed within the FixedUpdate loop you can schedule
the event with the following:

Scheduler.ScheduleFixed(float delay, Action action)

Abilities and items are generally updated within the FixedUpdate loop so they mostly use
the ScheduleFixed variant, while everything else is updated within Update so they use the
regular Schedule variant.

Scheduled events can later be cancelled with:

Scheduler.Cancel(ScheduledEventBase scheduledEvent)

| 317

ScheduledEventBase objects can be checked to determine if they are currently scheduled
with the Active property. A full example of using the Scheduler API is below.

// The scheduler class is in the Game namespace.
using Opsive.UltimateCharacterController.Game;

// Schedule the Explode method to occur in 1.5 seconds. The first
parameter of Explode will have a value of true.
var scheduledEvent = Scheduler.Schedule(1.5f, Explode, true)

// Check the active state of the scheduled event.
Debug.Log("Is active: " + scheduledEvent.Active);

// Cancel the scheduled event
Scheduler.Cancel(scheduledEvent);

Object Pool
It is a relatively expensive operation to instantiate and destroy objects. To avoid many
instantiations and destructions an object pool is used which will reuse an already-created
object. The ObjectPool component can pool both GameObjects and regular objects derived
from System.object.

When a new object is instantiated the ObjectPool.Instantiate method is called instead of the
GameObject.Instantiate method. An object can then be placed back in the pool with
ObjectPool.Destroy.

Consider the following example where a projectile is spawned. Instead of using
GameObject.Instantiate/Destroy you want to use the ObjectPool component to improve
performance. The following code can be used:

// Include the namespace that the ObjectPool component is located in.
using Opsive.Shared.Game;

// Keep a reference to the object so it can later be destroyed.
private GameObject m_Projectile;

// Instantiate the projectile.
m_Projectile = ObjectPool.Instantiate(projectilePrefab);

// The projectile should be destroyed at a later point in time.
ObjectPool.Destroy(m_Projectile);

The GenericObjectPool can also pool non-GameObjects with the Get and Return methods.
The following example shows the ActiveInputEvent object being pooled (ActiveInputEvent is
derived from System.object):

// Include the namespace that the GenericObjectPool component is
located in.

| 318

using Opsive.Shared.Utility;

// Keep a reference to the object so it can later be destroyed.
private ActiveInputEvent m_PooledInputEvent;

// Get a new ActiveInputEvent object.
m_PooledInputEvent = GenericObjectPool.Get<ActiveInputEvent>();

// The object can be returned back to the pool at a later point in
time.
GenericObjectPool.Return(m_PooledInputEvent);

Artificial Intelligence (AI)
The Ultimate Character Controller is focused on being a great character controller so it
does not include any built-in AI implementations. AI is an extremely large topic so instead of
including an implementation that would likely be replaced past the prototype stage the
controller is instead structured so it can work with existing AI implementations. Behavior
Designer is a behavior tree implementation and is cleanly integrated with the Ultimate
Character Controller.

API

If you are scripting your own AI some common functions that you may need to perform are
listed below. Ensure you have setup your character as an AI agent so the character will not
use the camera.

Damage

An Ultimate Character Controller character can be damaged by getting a reference to the
Health component and then calling the Damage method.

using UnityEngine;
using Opsive.UltimateCharacterController.Traits;

public class MyAIAgent : MonoBehaviour
{
 [Tooltip("A reference to the Ultimate Character Controller
character.")]
 [SerializeField] protected GameObject m_Character;

 /// <summary>
 /// Damages the character.
 /// </summary>
 private void Start ()
 {
 var health = m_Character.GetComponent<Health>();
 if (health != null) {
 health.Damage(50); // Inflict 50 damage on the character.

https://assetstore.unity.com/packages/tools/visual-scripting/behavior-designer-behavior-trees-for-everyone-15277?aid=1100lGdc
https://assetstore.unity.com/packages/tools/visual-scripting/behavior-designer-behavior-trees-for-everyone-15277?aid=1100lGdc
https://opsive.com/support/documentation/behavior-designer/integrations/opsive-character-controllers/
https://opsive.com/support/documentation/ultimate-character-controller/editors/character/
https://opsive.com/support/documentation/ultimate-character-controller/attributes/health/

| 319

 }
 }
}

Use Item

An item can be used by starting the Use Item Ability:

using UnityEngine;
using Opsive.UltimateCharacterController.Character;
using Opsive.UltimateCharacterController.Character.Abilities.Items;

public class MyAIAgent : MonoBehaviour
{
 [Tooltip("A reference to the Ultimate Character Controller
character.")]
 [SerializeField] protected GameObject m_Character;

 /// <summary>
 /// Uses the item.
 /// </summary>
 private void Start ()
 {
 var characterLocomotion =
m_Character.GetComponent<UltimateCharacterLocomotion>();
 if (characterLocomotion != null) {
 // Get the Use ability.
 var useAbility = characterLocomotion.GetAbility<Use>();
 if (useAbility != null) {
 // Try to start the use ability. If the ability is
started it will use the currently equipped item.
 characterLocomotion.TryStartAbility(useAbility);
 }
 }
 }
}

Equipping

In order to equip or unequip an item an item ability should be started. In the example below
the ability will equip the next item, and then it will equip a specific item index.

using UnityEngine;
using Opsive.UltimateCharacterController.Character;
using Opsive.UltimateCharacterController.Character.Abilities.Items;

public class MyAIAgent : MonoBehaviour
{
 [Tooltip("A reference to the Ultimate Character Controller

| 320

character.")]
 [SerializeField] protected GameObject m_Character;

 /// <summary>
 /// Equips the item.
 /// </summary>
 private void Start ()
 {
 var characterLocomotion =
m_Character.GetComponent<UltimateCharacterLocomotion>();
 if (characterLocomotion != null) {
 // Get the EquipNext ability and start it. The next item
within the ItemSetManager will be equipped.
 var equipNext =
characterLocomotion.GetAbility<EquipNext>();
 if (equipNext != null) {
 characterLocomotion.TryStartAbility(equipNext);
 }

 // Equip a specific index within the ItemSetManager with
the EquipUnequip ability.
 var equipUnequip =
characterLocomotion.GetAbility<EquipUnequip>();
 if (equipUnequip != null) {
 // Equip the ItemSet at index 2 within the
ItemSetManager.
 equipUnequip.StartEquipUnequip(2);
 }
 }
 }
}

Move

If you’d like to move your character a certain direction you can call the
SetCharacterMovementInput and SetCharacterDeltaRawRotation methods on the
KinematicObjectManager. The KinematicObjectManager ensures the character moves
smoothly even when the framerate is low so it should be called rather than directly moving
the character.

using UnityEngine;
using Opsive.UltimateCharacterController.Character;
using Opsive.UltimateCharacterController.Game;

public class MyAIAgent : MonoBehaviour
{
 [Tooltip("A reference to the Ultimate Character Controller
character.")]
 [SerializeField] private GameObject m_Character;

| 321

 private UltimateCharacterLocomotion m_CharacterLocomotion;

 /// <summary>
 /// Initializes the default values.
 /// </summary>
 private void Start()
 {
 m_CharacterLocomotion =
m_Character.GetComponent<UltimateCharacterLocomotion>();
 if (m_CharacterLocomotion == null) {
 enabled = false;
 }
 }

 /// <summary>
 /// Move the character in the forward direction with a slight
turn.
 /// </summary>
 private void Update()
 {
KinematicObjectManager.SetCharacterMovementInput(m_CharacterLocomotion
.KinematicObjectIndex, 0, 1);
KinematicObjectManager.SetCharacterDeltaYawRotation(m_CharacterLocomot
ion.KinematicObjectIndex, 1);
 }
}

Impact Callback

When a weapon collides with another object the “OnObjectImpact” event will be sent from
the built-in Event System. A corresponding Unity event will also be sent. This event allows
you to add new functionality when the impact occurs without having to change the class at
all. The following example will subscribe to this event from a new component:

using UnityEngine;
using Opsive.Shared.Events;

public class MyObject : MonoBehaviour
{
 /// <summary>
 /// Initialize the default values.
 /// </summary>
 public void Awake()
 {
 EventHandler.RegisterEvent<float, Vector3, Vector3,
GameObject, object, Collider>(gameObject, "OnObjectImpact", OnImpact);
 }

 /// <summary>

https://69.16.254.154/support/documentation/ultimate-character-controller/programming-concepts/events/
https://unity3d.com/learn/tutorials/topics/scripting/events

| 322

 /// The object has been impacted with another object.
 /// </summary>
 /// <param name="amount">The amount of damage taken.</param>
 /// <param name="position">The position of the damage.</param>
 /// <param name="forceDirection">The direction that the object
took damage from.</param>
 /// <param name="attacker">The GameObject that did the
damage.</param>
 /// <param name="attackerObject">The object that did the
damage.</param>
 /// <param name="hitCollider">The Collider that was hit.</param>
 private void OnImpact(float amount, Vector3 position, Vector3
forceDirection, GameObject attacker, object attackerObject, Collider
hitCollider)
 {
 Debug.Log(name + " impacted by " + attacker + " on collider "
+ hitCollider + ".");
 }

 /// <summary>
 /// The GameObject has been destroyed.
 /// </summary>
 public void OnDestroy()
 {
 EventHandler.UnregisterEvent<float, Vector3, Vector3,
GameObject, object, Collider>(gameObject, "OnObjectImpact", OnImpact);
 }
}

Performance

If you are noticing performance bottlenecks within Animators.OnAnimatorsAnimatorMove
there are a few different things that you can try to reduce the performance cost:

Change the Update Location on the Ultimate Character Locomotion to Update instead
of FixedUpdate.
If you are using a pathfinding agent you can disable the Detect Horizontal Collisions
and Detect Vertical Collisions toggle on the Ultimate Character Locomotion
component.
Disable CharacterIK for your AI agents.
Use instancing on your character. Our community has had success with GPU Instancer
and Mesh Animator.

Multiplayer
An abstract networking layer has been added to the controller and this allows for a variety
of networking implementations. This layer can be found within the
Opsive.UltimateCharacterController.Networking namespace. Out of the box multiplayer is
supported with the PUN Multiplayer Add-On.

https://assetstore.unity.com/packages/tools/utilities/gpu-instancer-117566?aid=1100lGdc
https://assetstore.unity.com/packages/tools/animation/mesh-animator-26009?aid=1100lGdc
https://opsive.com/assets/character-controller-pun-multiplayer-add-on/

| 323

Virtual Reality (VR)
VR is supported with the VR Add-On. An abstract VR layer has been added to the controller
and the VR add-on interfaces with that layer.

Integrations

Adventure Creator
The Ultimate Character Controller is integrated with Adventure Creator allowing your
character to be managed by Adventure Creator. The Adventure Creator integration is
created by ICEBOX Studios and the documentation can be found on this page.

A* Pathfinding Project
The Ultimate Character Controller is integrated with the A* Pathfinding Project allowing
your AI agent to navigate the world with the A* Pathfinding Project’s pathfinding
algorithms. This integration can be downloaded from one of the pages listed below.

Downloads

Ultimate Character Controller
First Person Controller
Third Person Controller
UFPS: Ultimate First Person Shooter
UTPS: Ultimate Third Person Shooter
UFPM: Ultimate First Person Melee
UFPM: Ultimate Third Person Melee

Setup

Install the integration from above.1.
Create your character using the Character Manager. AI Agent should be selected so2.
the player-controlled components do not get added.
Add the A* Pathfinding Project components to your character by following the A*3.
documentation.
Import the A* integration package from the link below.4.
Add the Astar AI Agent Movement ability to your agent. This ability can be positioned5.
anywhere within the ability list as it is a concurrent ability.
Set the destination of the A* Pathfinding Project component. When the ability has a6.
destination it will move the character according to the path created by the A*
Pathfinding Project.

https://opsive.com/assets/character-controller-vr-add-on/
https://www.assetstore.unity3d.com/#!/content/11896?aid=1100lGdc
https://adventure-creator.wikia.com/wiki/Ultimate_Character_Controller_integration
https://assetstore.unity.com/packages/tools/ai/a-pathfinding-project-pro-87744?aid=1100lGdc
https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807
https://opsive.com/downloads?pid=926
https://opsive.com/downloads?pid=185
https://opsive.com/downloads?pid=1107
https://opsive.com/downloads?pid=1106
https://opsive.com/downloads?pid=1108
https://opsive.com/support/documentation/ultimate-character-controller/editors/character/
https://arongranberg.com/astar/docs/getstarted.html
https://arongranberg.com/astar/docs/getstarted.html

| 324

Cinemachine
The Cinemachine ViewType allows the camera to be controlled by Unity’s Cinemachine.
Cinemachine version 2.8 or later is required and the com.unity.cinemachine Assembly
Definition Reference must be added to the Opsive.UltimateCharacterController Assembly
Definition.

Downloads

Ultimate Character Controller
First Person Controller
Third Person Controller
UFPS: Ultimate First Person Shooter
UTPS: Ultimate Third Person Shooter
UFPM: Ultimate First Person Melee
UFPM: Ultimate Third Person Melee

Setup

Ensure you are using Cinemachine 2.1+ and have added the Assembly Definition1.
Reference.
Import the Cinemachine integration package.2.
Create a Cinemachine camera (through the Cinemachine toolbar). Ensure the3.
CinemachineBrain component exists on the camera.
Perform the following steps if you are using a first person perspective:4.

Create a new GameObject and add the Cinemachine Virtual Camera component.1.
Add the First Person Cinemachine ViewType to the Camera Controller.2.
Specify the new Cinemachine Virtual Camera component in the Virtual Camera3.
field of the newly added ViewType.

Perform the following steps if you are using a third person perspective:5.
Create a new GameObject and add the Cinemachine Virtual Camera or Free Look1.
Virtual Camera component.
Add the Third Person Cinemachine ViewType to the Camera Controller.2.
Specify the new Cinemachine Virtual Camera component in the Virtual Camera3.
field of the newly added ViewType.

https://unity3d.com/learn/tutorials/topics/animation/using-cinemachine-getting-started
https://docs.unity3d.com/Manual/ScriptCompilationAssemblyDefinitionFiles.html
https://docs.unity3d.com/Manual/ScriptCompilationAssemblyDefinitionFiles.html
https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807
https://opsive.com/downloads?pid=926
https://opsive.com/downloads?pid=185
https://opsive.com/downloads?pid=1107
https://opsive.com/downloads?pid=1106
https://opsive.com/downloads?pid=1108

| 325

If you are using a FreeLook virtual camera the CinemachineSpringExtension4.
component should be added to that virtual camera so it will respond to spring
events.

Inspected Fields

Virtual Camera

The VirtualCamera that should activate when the ViewType is active.

Look Direction Distance

The distance that the character should look ahead.

Field of View

The field of view of the main camera.

Field of View Damping

The damping time of the field of view angle when changed.

Position Spring

The positional spring used for regular movement.

Rotation Spring

The rotational spring used for regular movement.

Secondary Position Spring

The positional spring which returns to equilibrium after a small amount of time (for recoil).

Secondary Rotation Spring

The rotational spring which returns to equilibrium after a small amount of time (for recoil).

Control Freak
The Ultimate Character Controller is integrated with Control Freak allowing you to use
Control Freak for your input instead of Unity’s input system. This integration can be
downloaded from one of the pages listed below.

Downloads

Ultimate Character Controller
First Person Controller
Third Person Controller
UFPS: Ultimate First Person Shooter

https://unity3d.com/learn/tutorials/topics/animation/using-cinemachine-free-look
https://assetstore.unity.com/packages/tools/input-management/control-freak-2-touch-input-made-easy-11562?aid=1100lGdc
https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807
https://opsive.com/downloads?pid=926
https://opsive.com/downloads?pid=185

| 326

UTPS: Ultimate Third Person Shooter
UFPM: Ultimate First Person Melee
UFPM: Ultimate Third Person Melee

Setup

Install the integration from above.1.
Remove the Unity Input component from your character (if it has been added).2.
Add the Control Freak Input component to your character.3.
Setup the Control Freak rig to work with your input setup. The “CF2-Opsive-UCC-Rig”4.
prefab is included in the integration package allowing you to quickly get started. If you
are using this prefab make sure you drag it into your scene.
Remove any Virtual Controls created by the Setup Manager. The Virtual Controls are5.
designed to work with the Unity Input component.

DestroyIt
The Ultimate Character Controller is integrated with DestroyIt allowing objects to be
destroyed using the DestroyIt system. The DestroyIt integration is created by ModelShark
Studio and the documentation can be found on this page.

Dialogue System
The Ultimate Character Controller is integrated with the Dialogue System allowing your
character to interact in dialogue and quests provided by the Dialogue System. The Dialogue
System integration was created by Pixel Crushers and the documentation can be found on
this page. You can download the integration package from the links below.

Downloads

Ultimate Character Controller
First Person Controller
Third Person Controller
UFPS: Ultimate First Person Shooter
UTPS: Ultimate Third Person Shooter
UFPM: Ultimate First Person Melee
UFPM: Ultimate Third Person Melee

Easy Touch
The Ultimate Character Controller is integrated with Easy Touch allowing you to use Easy
Touch for your input instead of Unity’s input system. This integration can be downloaded
from one of the pages listed below.

Downloads

Ultimate Character Controller
First Person Controller

https://opsive.com/downloads?pid=1107
https://opsive.com/downloads?pid=1106
https://opsive.com/downloads?pid=1108
http://controlfreakdocs.000webhostapp.com/page_rig_creation.html
https://assetstore.unity.com/packages/tools/physics/destroyit-destruction-system-18811?aid=1100lGdc
https://forum.unity.com/threads/released-destroyit-cinematic-destruction-system.251622/page-9#post-4078576
https://assetstore.unity.com/packages/tools/ai/dialogue-system-for-unity-11672?aid=1100lGdc
https://www.pixelcrushers.com/dialogue_system/manual2x/html/ucc.html
https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807
https://opsive.com/downloads?pid=926
https://opsive.com/downloads?pid=185
https://opsive.com/downloads?pid=1107
https://opsive.com/downloads?pid=1106
https://opsive.com/downloads?pid=1108
https://assetstore.unity.com/packages/tools/input-management/easy-touch-5-touchscreen-virtual-controls-3322?aid=1100lGdc
https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807

| 327

Third Person Controller
UFPS: Ultimate First Person Shooter
UTPS: Ultimate Third Person Shooter
UFPM: Ultimate First Person Melee
UFPM: Ultimate Third Person Melee

Setup

Install the integration from above.1.
Remove the Unity Input component from your character (if it has been added).2.
Add the Easy Touch Input component to your character.3.
Setup the Easy touch input components to work with your input setup. The4.
“EasyTouch UCC Canvas” prefab is included in the integration package allowing you
to quickly get started. If you are using this prefab make sure you drag it into your
scene.
Remove any Virtual Controls created by the Setup Manager. The Virtual Controls are5.
designed to work with the Unity Input component.

Edy's Vehicle Physics
The character controller is integrated with Edy’s Vehicle Physics giving your character the
ability to drive a vehicle controlled by Edy’s Vehicle Physics. The integration contains the
EVPDriveSource which implements the IDriveSource interface described on the Drive ability
page. This integration can be downloaded from one of the pages listed below.

Downloads

Ultimate Character Controller
First Person Controller
Third Person Controller
UFPS: Ultimate First Person Shooter
UTPS: Ultimate Third Person Shooter
UFPM: Ultimate First Person Melee
UFPM: Ultimate Third Person Melee

Setup

Install the integration from above.1.
Ensure the vehicle is setup according to the Edy’s Vehicle Physics documentation.2.
Follow the directions from the Drive ability documentation page.3.

For Step 3 the EVPDriveSource component should be added to the vehicle.
Step 6 does not need to be performed.

If you want to use Edy’s Vehicle Camera Controller to control the camera while the4.
character is driving the vehicle the Use Vehicle Camera Controller toggle should be
enabled. If this is enabled a GameObject with no children should be added to the scene
that contains the Edy Vehicle Camera Controller.
If the character is visible within the vehicle the Update Location on the Ultimate5.
Character Locomotion component should be set to Update.

https://opsive.com/downloads?pid=926
https://opsive.com/downloads?pid=185
https://opsive.com/downloads?pid=1107
https://opsive.com/downloads?pid=1106
https://opsive.com/downloads?pid=1108
https://assetstore.unity.com/packages/tools/physics/edy-s-vehicle-physics-403?aid=1100lGdc
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/drive/
https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807
https://opsive.com/downloads?pid=926
https://opsive.com/downloads?pid=185
https://opsive.com/downloads?pid=1107
https://opsive.com/downloads?pid=1106
https://opsive.com/downloads?pid=1108
https://www.edy.es/dev/vehicle-physics/user-guide/

| 328

Final IK
The Ultimate Character Controller is integrated with Final IK allowing you to use Final IK
for IK rather than Unity’s built-in IK system. This integration can be downloaded from one of
the pages listed below. After you have imported the integration package Final IK can be
used by performing the following steps:

Downloads

Ultimate Character Controller
First Person Controller
Third Person Controller
UFPS: Ultimate First Person Shooter
UTPS: Ultimate Third Person Shooter
UFPM: Ultimate First Person Melee
UFPM: Ultimate Third Person

Setup

Install the integration from above.1.
Remove the Character IK component from your character (if it has been added).2.
Add the Final IK Bridge component included in the integration package.3.
Add any of the following Final IK components:4.

Full Body Biped IK: Used for humanoids, allows for finer positioning of the
character’s limbs.
Look At IK: Allows the character to look in the direction of the look source.
Aim IK: Allows the character to aim at a target.
Grounder FullBody IK: Allows the character’s feet to be positioned on the
surface.
Interaction System: Allows the character to use IK to interact with ability objects.

Ensure all of the Final IK components are configured correctly. The Final IK5.
documentation is a good reference for how to setup the Final IK components.
If the AimIK component has been added the character the Animated Aim Direction6.
Vector3 may need to be adjusted. This value represents the the direction of the
animated weapon aiming in character space.

Interaction System

Abilities can work with the IK system in order to position limbs in the correct locations. An
example of this is when the Interact ability positions the hand so it always presses the
button. In order for this to work with Final IK you must have the following setup:

The Final IK Interaction System component is added to the character.
The object that the character is interacting with has the Ability IK Target and Final IK
Interaction Object components added to it. In the Interact example the button
GameObject should have the Interaction Component added.

https://assetstore.unity.com/packages/tools/animation/final-ik-14290?aid=1100lGdc
https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807
https://opsive.com/downloads?pid=926
https://opsive.com/downloads?pid=185
https://opsive.com/downloads?pid=1107
https://opsive.com/downloads?pid=1106
https://opsive.com/downloads?pid=1108
http://www.root-motion.com/finalikdox/html/pages.html
http://www.root-motion.com/finalikdox/html/pages.html
http://www.root-motion.com/finalikdox/html/page10.html

| 329

High Definition Render Pipeline
When the first person arms and items are drawn to the screen they are drawn using a
second camera (called camera stacking). This prevents the objects from clipping with walls
that are in front of the character. This works well for the standard pipeline, but the high
definition render pipeline offers a better and more efficient solution.

The camera’s Renderer can be changed which allows you to specify the order that the
objects are rendered. The Ultimate Character Controller uses this method to ensure the first
person arms and items do not clip with other objects.

Integration Downloads

Ultimate Character Controller
First Person Controller
UFPS: Ultimate First Person Shooter
UFPM: Ultimate First Person Melee

Setup

Setup your project to use the high definition render pipeline.1.
Import the HDRP integration package from above. The HDRP integration2.
requires Unity 2020.2 and HDRP version 10 or later.
Drag the “Overlay Pass” prefab from the HDRP integration package into your scene.3.
On the Camera Controller select the First Person View Type and change the Overlay4.
Render Type to Render Pipeline:

To prevent duplicate shadows ensure Cast Shadows is set to Off for all of the5.
Renderers on the first person objects. For example, with the example character you’ll
want to ensure Cast Shadows is set to Off for all of the objects underneath the
Nolan/First Person Objects GameObject.
The InvisibleShadowCastorHDRP material needs to be set:6.

If using the Ultimate Character Controller, on your character’s Perspective
Monitor the Invisible Material should be set to the InvisibleShadowCastorHDRP
material included in the download.
If using a dedicated first person asset, the InvisibleShadowCastorHDRP material
should manually be set on all of the third person objects that should be invisible
(such as the head, arms, and items).

If you are using the Object Fader component set the Color Property Name to7.
“_BaseColor”.
On the Surface Manager the Main Texture Property Name should be set to the name of8.
the main texture within the shader that you are using.

https://opsive.com/support/documentation/ultimate-character-controller/camera/view-types/included-view-types/first-person/
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.2/manual/Custom-Pass.html
https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807
https://opsive.com/downloads?pid=185
https://opsive.com/downloads?pid=1106
https://docs.unity3d.com/Packages/com.unity.render-pipelines.high-definition@10.2/manual/Getting-started-with-HDRP.html
https://docs.unity3d.com/Manual/class-MeshRenderer.html
https://opsive.com/support/documentation/ultimate-character-controller/camera/object-fader/
https://opsive.com/support/documentation/ultimate-character-controller/surface-system/surface-manager/

| 330

Horse Animset Pro
The Ultimate Character Controller is integrated with Horse Animset Pro allowing your
character to ride on a Horse Animset Pro horse. The Horse Animset Pro integration was
created by Malbers and the download/documentation can be found on this page.

InControl
The Ultimate Character Controller is integrated with InControl allowing you to use
InControl for your input instead of Unity’s input system. This integration can be downloaded
from one of the pages listed below.

Downloads

Ultimate Character Controller
First Person Controller
Third Person Controller
UFPS: Ultimate First Person Shooter
UTPS: Ultimate Third Person Shooter
UFPM: Ultimate First Person Melee
UFPM: Ultimate Third Person Melee

Setup

Install the integration from above.1.
Remove the Unity Input component from your character (if it has been added).2.
Add the InControl Input to your character.3.
Setup the InControl input bindings to work with your input setup. These input bindings4.
must implement the IBindings interface included with the integration. A sample set of
bindings is also included in the package.
Specify the created binding class name within the InControl Input component added in5.
step 2. If you are using the sample bindings the value
“Opsive.Shared.Integrations.InControl.SampleBindings” should be specified for the
Bindings Type field.
Add the InControl Manager to your scene.6.
Remove any Virtual Controls created by the Setup Manager. The Virtual Controls are7.
designed to work with the Unity Input component.

Input System
The Ultimate Character Controller is integrated with Unity’s Input System allowing the
player to get input from Unity’s new system rather than the old Input Manager. This
integration can be downloaded from one of the pages listed below.

Integration Downloads

Ultimate Character Controller
First Person Controller

https://assetstore.unity.com/packages/3d/characters/animals/horse-animset-pro-riding-system-79902?aid=1100lGdc
https://malbersanimations.gitbook.io/animal-controller/annex/integrations/opsive-integration
https://assetstore.unity.com/packages/tools/input-management/incontrol-14695?aid=1100lGdc
https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807
https://opsive.com/downloads?pid=926
https://opsive.com/downloads?pid=185
https://opsive.com/downloads?pid=1107
https://opsive.com/downloads?pid=1106
https://opsive.com/downloads?pid=1108
http://www.gallantgames.com/pages/incontrol-binding-actions-to-controls
https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807

| 331

Third Person Controller
UFPS: Ultimate First Person Shooter
UTPS: Ultimate Third Person Shooter
UFPM: Ultimate First Person Melee
UFPM: Ultimate Third Person Melee

Setup

Install the Unity Input System from the Package Manager. The new Input System1.
should be enabled within the Player Preferences.
Install the integration from above.2.
Remove the Unity Input component from your character (if it has been added).3.
Add the Unity Input System component to your character.4.
Add the Player Input component to your character if it has not already been added.5.
The included CharacterInput.inputassets file should be specified in the Actions field on
the Player Input component.

If you are using the Unity Event System the Standalong Input Module should be6.
replaced with Input System UI Input Module. This can be swapped on the GameObject
that the EventSystem component was added to (called EventSystem by default).

The demo scene included with the character controller will not work with this integration as
the Demo scene scripts use the old Input Manager system.

Love/Hate
The Ultimate Character Controller is integrated with Love/Hate allowing your character to
report combat actions as Love/Hate deeds that faction members can witness. The Love/Hate
integration was created by Pixel Crushers and the documentation can be found within the
README of the integration package. You can download the integration package from the
links below.

Downloads

Ultimate Character Controller
First Person Controller
Third Person Controller
UFPS: Ultimate First Person Shooter
UTPS: Ultimate Third Person Shooter
UFPM: Ultimate First Person Melee
UFPM: Ultimate Third Person Melee

https://opsive.com/downloads?pid=926
https://opsive.com/downloads?pid=185
https://opsive.com/downloads?pid=1107
https://opsive.com/downloads?pid=1106
https://opsive.com/downloads?pid=1108
https://docs.unity3d.com/Packages/com.unity.inputsystem@1.0/manual/Installation.html
https://assetstore.unity.com/packages/tools/ai/love-hate-33063?aid=1100lGdc
https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807
https://opsive.com/downloads?pid=926
https://opsive.com/downloads?pid=185
https://opsive.com/downloads?pid=1107
https://opsive.com/downloads?pid=1106
https://opsive.com/downloads?pid=1108

| 332

NWH Vehicle Physics
The character controller is integrated with NWH Vehicle Physics giving your character the
ability to drive a vehicle controlled by NWH Vehicle Physics. The integration contains the
EVPDriveSource which implements the IDriveSource interface described on the Drive ability
page. This integration can be downloaded from one of the pages listed below.

Downloads

Ultimate Character Controller
First Person Controller
Third Person Controller
UFPS: Ultimate First Person Shooter
UTPS: Ultimate Third Person Shooter
UFPM: Ultimate First Person Melee
UFPM: Ultimate Third Person Melee

Setup

Install the integration from above. If testing the demo scene ensure the Input System1.
integration is also imported.
Ensure the vehicle is setup according to the NWH Vehicle Physics documentation.2.
Follow the directions from the Drive ability documentation page.3.

For Step 3 the NWHDriveSource component should be added to the vehicle.
Step 6 does not need to be performed.

If the vehicle is being detected with the Object Identifier make note what layer that4.
collider is on. By default the vehicle colliders within NWH Vehicle Physics use the
Ignore Raycast layer so the Detect Layers field of the Drive ability should be updated
to reflect that.

Opsive Behavior Designer
See this page for information on the Behavior Designer integration.

Opsive Ultimate Inventory System
The character controller is seamlessly integrated with the Ultimate Inventory System
allowing you to use the Ultimate Inventory System inventory rather than the inventory
included with the character controller. The integration includes many additional scripts and
functionality which are responsible for the communication between the two assets. The
main ones are the Character Inventory Bridge and the Inventory Item Set Manager. This
integration can be downloaded from one of the pages listed below.

Current Version 2.0.4, compatible with the Character Controller version 2.4and the
Inventory System version 1.2.

A great way to get familiar with the integration is by playing around in the integration demo
scene which can be found in the

https://assetstore.unity.com/packages/tools/physics/nwh-vehicle-physics-2-166252?aid=1100lGdc
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/drive/
https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807
https://opsive.com/downloads?pid=926
https://opsive.com/downloads?pid=185
https://opsive.com/downloads?pid=1107
https://opsive.com/downloads?pid=1106
https://opsive.com/downloads?pid=1108
https://opsive.com/support/documentation/ultimate-character-controller/integrations/input-system/
https://opsive.com/support/documentation/ultimate-character-controller/integrations/input-system/
http://nwhvehiclephysics.com/doku.php
https://opsive.com/support/documentation/behavior-designer/integrations/opsive-character-controllers/

| 333

Assets\Opsive\UltimateCharacterController\Integrations\UltimateInventorySystem\Demo
folder.

Integration Download

Ultimate Character Controller
First Person Controller
Third Person Controller
UFPS: Ultimate First Person Shooter
UTPS: Ultimate Third Person Shooter
UFPM: Ultimate First Person Melee
UFPM: Ultimate Third Person Melee

Videos

The videos are a great starting point. Once you go through them to get a good idea of how
the system works it is recommended to read through the documentation to learn more.
The Integration Videos come in two parts: Part 1 Setting up the Character & Item and Part
2 Setting up the UI

You may want to go through some of the other video tutorials specific to the Character and
Inventory systems too.
Some of the videos you may interested in are

Character: First/Third Person Character Creation1.
Character: First/Third Person Item Creation2.
Character: Runtime Item Pickup3.
Character: XXXX Weapon/Item Setup (Keep in mind that you should create Item4.
Prefabs, so do not follow things to the letter)
Character: State System5.
Inventory: Basic Concepts6.
Inventory: Getting Started With The Ultimate Inventory System7.
Inventory: Creating a Database and Attributes8.
Inventory: Inventory Component and Item Collections9.
Inventory: UI Designer Overview10.
Inventory Item View Slot Containers11.
Inventory: Customizing UI12.
Inventory: Item Actions13.

Videos just show the tip of the iceberg. It is highly recommended to read the documentation
to get all the information required to use the systems to their full potential

Getting Started

It is highly recommended to fully read through the documentation below once, before
following the steps below, as it gives more context.

It is important that the Ultimate Inventory System and the Character controller are updated

https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807
https://opsive.com/downloads?pid=926
https://opsive.com/downloads?pid=185
https://opsive.com/downloads?pid=1107
https://opsive.com/downloads?pid=1106
https://opsive.com/downloads?pid=1108
https://opsive.com/videos/?pid=22330

| 334

to the latest version. Check the version of our assets in the bottom left of our editor
windows. Do NOT trust the package manager version, the Unity Package Manager doesn’t
always import the most recent update after you download the asset. Ensure you are getting
the latest by removing the package cache from the Asset Store download folder.

You may check the required versions for both packages in the Integration window (inside
the inventory system editor).

Do not forget that the Character Controller package must be installed after it has been
imported. Learn more about the Character Controller installer here

Terminology

Inventory Item: An item defined in the scope of the Inventory system. It is a simple
object that is used to store attribute values.
Character Item: An item defined in the scope of the Character Controller. It is a
component on a GameObject which define how the object should be animation, used,
etc…
Equippable: an Item that can be equipped using the character controller.
Equippable Collections: one or multiple Item Collections that store items that the
character can switch between using the character controller.
Item Set: a set of items the the character holds at any one time. They are managed by
the Item Set Manager.
Item Set Rule: An object that will define what item Set will be created depending on
the items equipped.
Item Slot Set: An object that can be used on an Item Slot Collection to define what
items can be “soft equipped” on the character.
Soft Equipped: When an item is equipped on the character but is not active (for
example when a character has his weapon holstered on their belt or back)
Active Equipped: An Item that the character physically holds and can be used.
Item Set Slot: The slot within an Item Set managed by the Item Set Manager. Also
known as “SlotID” in the character system scope.
Equippable Slot: The slot within an Item Slot Collection which uses an Item Slot Set
and that was set as an Equippable Item Collection.

Concept

The integration is used to communicate between the character and the inventory system.
Therefore it is important to understand the parts of both system that overlap where the
integration is mostly used.

Any item which the character can hold and use with the character controller will need to be
“Equippable” and follow the integration requirements. This includes items such as Weapons,
Body, Tools, etc. Any of the other items should not be “Equippable”. This includes Ammo,
Materials, Armor, etc.

In some cases the items can be in a grey area. For example Armor or Magic, should they be
“Equippable” character Items or not?
In most cases armor is not a usable Item and therefore does not need to be a character item.
Instead it can be equipped using the Equipper solution from the Inventory system. If that is

https://forum.unity.com/threads/new-package-versions-are-shown-as-downloaded-but-i-have-never-downloaded-them.1017196/#post-6605035
https://forum.unity.com/threads/new-package-versions-are-shown-as-downloaded-but-i-have-never-downloaded-them.1017196/#post-6605035
https://answers.unity.com/questions/690729/how-do-you-remove-packages-already-downloaded-from.html
https://opsive.com/support/documentation/ultimate-character-controller/getting-started/importing/

| 335

the case make sure that the armor does not inherit the “Equippable” category which should
only be used by inventory items with character items. For Magic it really depends on the use
case, but either way could make sense. It mostly depends which workflow you prefer
building on: Inventory Item Actions or Character Item Actions.

Most of the UI related to items should be controlled by the Inventory System, although the
Character UI can be used to display the equipped items and the ammo amount. The items
are organized in Item Collection within the Inventory System Inventory. On a high level
these are the required Item Collections.

Default: the main item collection can be considered as the characters bag, it contains
all the items the character owns expect the equipped items.
Equippable (multiple): The Equippable Item Collections holds the inventory items
which are on the character and can be equipped at any time by switching Item Set.
Multiple Equippable Item Collections can be used. A good example for it is having a an
ItemSlotCollection for a primary and secondary weapon, while having another Item
Collection for the Body item that is always equipped and cannot be removed.
Loadout: Items that do not change even when the save data is loaded and can be
added to the Default Item Collection on start.

Whenever an item is added to or removed from one of the Equippable Item Collections the
Item Sets in the Inventory Item Set Manager are recomputed using the Item Set Rules to
match set of items in the Equippable Item Collections. This allows great flexibility and
scalability with Item Sets. No need to define all possible item combinations or even add
ItemSets on Item Pickups anymore (although it is still allowed if required).

When an inventory item is removed from the Equippable Item Collection it can only be
reused by that same character. Any property values (example DamageAmount) on the
character item that you wish to save or carry over to another character Item must be bound
to an attribute on the inventory item. This can be done using the Item Binding component or
with custom components, like the ShootableWeaponAmmoBinding used to bind ammo
definition, clip size and remaining amount.

Setup scene

Install both packages and the integration from above.1.
Using the Inventory Manager, create a new Inventory database that follows the2.
requirements defined below (or simply duplicate the
EmptyCharacterInventoryDatabase).
Create a new scene, use the Inventory and Character Manager to setup the scene with3.
the required manager components.

Setup character

Create an Opsive Character using the Character Manager (skip this step if you already1.
have a character set up).
Open the Integrations Manager from Tools -> Opsive -> Ultimate Inventory System ->2.
Integrations Manager. Select the Integration Inspectors tab.
Drag your character into the Character field under Character Setup. The character3.
must be in the scene and must first be setup with the Character Manager. Select Setup

| 336

Character.

The step above automatically creates and assigns an Item Set Rule Object and an Item4.
Slot Set. These can be found in the folder where the Inventory Database was saved.
Refer to the documentation below to learn more about those and customize them to
your liking.
Ensure the Character Inventory Bridge component references the Equippable and5.
Ammo Item categories. Ensure it also references the correct Item Collections and a
Inventory Item Pickup Prefab. Learn more about the item collections and pickups
below.

The character is now setup, you may start creating Items.6.

| 337

Setup Item

Using the Inventory Manager Editor, create a new Item Definition for the item that1.
you’d like to add. Ensure that it inherits from the Equippable Item Category and from
either the Single Item or Multi (or equivalent) Item category.
Using the Character Manager Editor, create your Item prefab using the Runtime Item2.
Pickup steps. Item Types from the Ultimate Character Controller do not need to be
created as you should instead use the Item Definitions.
Using the Integration Manager Editor, select the Item prefab(s) you created and bind3.
them to your Item Definition. This ensures that the Item Definition references the
prefab(s) within an attribute and vice versa. It also adds some components to the
character item prefab.
Some extra options are available for character items with the Shootable Weapon
component, allowing to bind ammo data between the inventory and character item at
runtime.

Ensure the character Item prefab is now setup correctly, if you are using Item Set4.
Rules to create the Item Set ensure the “Unique Item Set” field on the Item prefab is
toggled off.
Make good use of Object Identifiers to find references to objects (transforms, colliders,5.
etc…) on the character once the item is spawned at runtime.

https://opsive.com/support/documentation/ultimate-character-controller/items/runtime-pickup/
https://opsive.com/support/documentation/ultimate-character-controller/items/runtime-pickup/

| 338

On the Character Item Prefab use the Item Binding or custom components (like the6.
Shootable Weapon Ammo Binding) to bind your Inventory Item Attribute values to
properties on your item. Example “DamageAmount”.

Converting Existing Ultimate Character Controller Items

If you have an existing project using the character controller and wish to convert the items
on your character to work with the Ultimate Inventory System you must follow the steps
below. Character Items which are already prefabs set to work with the Runtime pickup can
go straight to the steps defined in the Setup Item section above.

Create a new character Item prefab using the steps from the runtime pickup section.1.
The bottom Object Identifier section is especially useful for specifying the locations of
GameObjects that exist on the character.
Copy the Item and ItemAction components (Shootable Weapon, Melee Weapon,2.
Throwable Item, Magic Item) from your existing item to the new item prefab that was
just created.
Delete the item from your character using the Item Manager.3.

https://opsive.com/support/documentation/ultimate-character-controller/items/runtime-pickup/
https://opsive.com/support/documentation/ultimate-character-controller/editors/item/

| 339

Once you have the character item prefab use the steps defined in the Setup Item section
above.

Setup Item Set Rules

Setting up your item set rules is important to decide how Item Sets will be created at
runtime. Item Sets are the combination of items that can be equipped by the character,
Example Sword+Shield: Sword in the right hand (slot 0) and Shield in the left hand (slot 1).

Go to the Inventory Item Set Manager inspector1.
Set the “Slot Count” to the number of Slots the character can equip simultaneously.2.
This number must match the number of “Item Slot” component inside the characters
Rig. The “Item Slot” component has an ID which must be unique, it’s location within
the rig will define where the item will be spawned when equipped. By default Item Slot
ID 0 is used for the right hand and ID 1 is used for the left hand. You may have more
slots if you wish. In the demo scene we use a thrid slot, Slot ID 2 for magic items
which can be cast simultaneously to having an item equipped in both hands.
Define your Item Set Rule Categories. These are groups of Item Set Rules that will3.
create Item Sets at runtime. Only one Item Set within an Item Set Category can be
active at a time. Having multiple Item Set Categories allows you to combine multiple
active item sets toghether. For example having an Equippable Item Set Rule Category
for your weapons (sword, shield, Bow, etc…) and having another Item Set Rule
Category for Magic Items can allow you to equip any combination of Item Sets within
the Equippable Category with any Item Set within the Magic Item Set Rule Category.
So Instead of creating all the possible combination of Sword+NaN+NaN,
Sword+NaN+Magic, Sword+Shield+NaN, Sword+Shield+Magic, NaN+Bow+Nan,
NaN+Bow+Magic etc.. You may simply have Sword+NaN+NaN, Sword+Shield+NaN,
NaN+Bow+NaN in one category and NaN+NaN+Magic in the other one. Depending
on the amount of ItemSet Rules you will require, this can save you a great amount of
repetitive setup.
Create Your Item Set Rules in a was that is restrictive enough. Think of your Item Set4.
Rules as the types of items that can be equipped toghether and or act differently. For
example Melee Weapon, or Melee Weapon + Shield, or Bow. Even though Melee
Weapon and Bow are just one Item, they act very differently, therefore they should
have their own ItemSet with a specific State name. The Item Set Rule State name is
very important to change the state of the player depending on the equipped Item Set.
For example the Bow uses the state system extensively, here is a forum post on how to
setup a bow using the integration. To learn more about the State System and preset go
here.
Learn more about the Inventory Item Set Manager and Item Set Rules below and5.
check the integration demo scene to see an example of how to setup your Item Set
Rules.

Create Bow Item Steps

Follow the generic “Setup Item” steps above1.
Make sure to follow the video tutorial on how to setup a Bow Item2.
Don’t forget to use an ObjectIdentifier component to define the position where the3.
character will hold the arrow (check the demo scene for further assistance.)

https://opsive.com/forum/index.php?threads/equip-bow-on-left-hand.6412/#post-31822
https://opsive.com/forum/index.php?threads/equip-bow-on-left-hand.6412/#post-31822
https://opsive.com/support/documentation/ultimate-character-controller/state-system/
https://youtu.be/xJ7QCxeOZIU?t=1086

| 340

Add an Item Set Rule that uses the Bow in slot 1 (slot 1 is the left hand by default).4.
Make sure there aren’t other ItemSet Rules which could be adding the Bow in the
wrong slot
In the Bow Item Set Rule set the “State” name to “Bow”. The state name is used in a5.
lot of places to change the character when the character holds the Bow.
In the character Item Abilities find the “Use(Slot 0)” and “Use(Slot 1)” Ability, and6.
assign a new state for “Bow” -> “BowUseSlot<0/1>” accordingly. This ensures that
pressing the attack button (left click) uses the left hand item (Bow) and not the right
hand item.
Refer to the Bow Item prefab within the integration Folder for further assisance.7.

Create Body Item Steps

The body item is often used as the default item that is equipped when not other items are
equipped. Step 1-4 are to create the item, step 5-7 are to make it the default item.

Follow the generic “Setup Item” steps above. Make sure to that the body prefab item1.
has the “First/Third Person Perspective Item” & “First/Third Person Melee Weapon
Properties”
Set the Animator Audio states within the Melee Weapon. And make sure your2.
Animation Events are setup correctly or instead you may choose to not wait for
animation events
Of course the Body Item is added at runtime, therefore to reference the colliders on3.
the character you must use ObjectIdentifiers. In the “First/Third Person Melee Weapon
Properties” you may define a list of colliders. Clicking on an element in that list will
allow you to define the Collider Object ID. When the Item spawns the system will
search for Object Identifier components with those IDs on the character to fetch
references to the colliders.
Create an Item Set Rule for your Body Item and make sure it has state name “Body”.4.
The Item Set Rule should have “Default” and “Enabled” set to True and “Can Switch5.
To” set to False if you wish to make it your default item when nothing is equipped.
To allways have the Body Item equipped create a new Item Collection called6.
“Equippable” and renamed your weapon equipment item collection to “Equippable
Slots”. “Equippable Slots” will be of type ItemSlotCollection and have purpose set to
Equipment or None (aka Other). “Equippable” would normally have type
ItemCollection and purpose set to None.
Assign “Equippable” and “Equippable Slots” as Equippable ItemCollections within the7.
Character Inventory Bridge component under the “Equippable Item Collection Names”
field. Doing so will allow the bridge to monitor both item collections and equip item
accordingly.
Refer to the Body Item prefab within the integration Folder for further assisance.8.

Common Errors

Here are some common errors that users have reported and how to fix them.

Error when updating the Ultimate Inventory System

This error happens when updating the integration, if both the character controller and the

| 341

inventory system were removed before they are re-imported. If the Ultimate Inventory
System is re-imported before the Character Controller then this error will appear.

Simply install the Character Controller using the installer to fix the error.

Equip Unequip Ability has a Category with ID 3636…. that cannot be found

This errors happens if you setup a new character with built-in abilities preconfigured from
the Character Controller Demo.

The easiest way to fix it is to go through each Equip/Unequip Ability, within the Character
Locomotion script under Item Abilities, and re-selecting the item set category to force the
category ID to be serialized.

| 342

Null Reference Exception within Item Action Awake

This error can happen when an the main item prefab with all the Ultimate Character
Controller scripts (Item, First/Third Person Perspective, Melee/Shootable Weapon, etc…) is
spawned outside the player. This can often happen if the Item prefab was mistakenly set as
the “DropPrefab” instead of a simple model without any scripts.

Item Action in this case is refering to the Ultimate Character Controller Item Action (Melee
Weapon, Shootable Weapon, etc…) and not to the Ultimate Inventory System Item Action
which is used in the UI in most cases.

Duplicate ID ‘1’ found

This warning happens if Character Setup is used to create multiple characters. The
Character setup will create a Character with an Inventory Identifier, since it is extremely
useful for the main player character. The Inventory Identifier must have a unique ID set in

| 343

the inspector.

There are two options to fix this warning:

On the Inventory Identifier change the ID and make sure it is Unique1.
Remove the Inventory Identifier component2.

For enemy character prefab the Inventory component must be removed, otherwise the
warning will appear each time a new enemy is spawned.

Inventory Database

The integration includes two databases: IntegrationDemoInventorySystem and
EmptyCharacterInventoryDatabase. The IntegrationDemoInventorySystem database is used
within the Ultimate Character Controller demo scene. To get started within a fresh database
you can use the EmptyCharacterInventoryDatabase which contains the minimum for the
Ultimate Character Controller integration. This database can be duplicated from the
Ultimate Inventory System’s Setup Manager:

It is also possible to create your own database from scratch or edit an existing Database to
be compatible with the Integration.

Required:

A parent category for all your Character Items, usually called “Equippable”:
Equippable: The Equippable category specifies the items that can be equipped,
such as an assault rifle or a sword. While this high level category is required, the

| 344

Ultimate Inventory System allows you to nest categories so you can have any
category structure beneath this.

A parent category for all your Ammo (also known as Consumable for the Character
controllers), usually called “Ammo”:

Ammo: The Ammo category specifies the objects that can be “consumed” by
items, such as assault rifle bullets or mana.

All “Equippable” Item Definition must have an Attribute of type “GameObject” or
“GameObject[]”, usually called “Prefab” and “Prefabs” respectively. It is recommended
to create a “Single Item” and “Multi Item” or “Single Equippable” and “Multi
Equippable” category which have those attributes respectively. Then any child
category, can use use either one.

Multi Item: the Multi Item category is an optional category which specifies that
the same item can be equipped in multiple item set slots. Examples include dual
pistols or the grenade which can be equipped in the left or right hand. Any item
which satisfies this requirement must inherit the Multi Item category. Items
which can be dual wielded but are not of the same item type, such as a sword and
shield, do not need to be parented to the Multi Item category.
Prefab: A GameObject which is used by items which are in the Single Item
category. This attribute specifies the prefab that should be spawned. This prefab
should be a runtime pickup prefab.
Prefabs: A GameObject[] which is used by items which are in the Multi Item
category. This attribute specifies the set of prefabs that should be spawned. The
array order does not matter, the item set slots used are defined on the prefabs.

Recommended:

It is recommended to use a category example “Shootable” that has a “AmmoData”
Item Attribute which can be used to bind the character “ShootableWeapon”
consumable item amount and clip size to data stored on the Inventory Item itself. A
“ShootableWeaponAmmoBinding” component is required to bind the attribute to the
“ShootableWeapon” properties.

AmmoData: A AmmoData which is used store the Ammo ItemDefinition, the clip
size and the remaining clip amount. It must be set as a Item Attribute to be
updated at runtime as the weapon is used.
If the AmmoData type does not show up in the type drop down within the
Attribute Editor, that means it is not part of your Unit Options. Learn more about
Attributes and Unit Options here

Add categories with Item or ItemDefinition attributes which can be used to bind with
character Item Action component properties. Some good examples are
“DamageAmount”, “ImpactForceFrames”, “ImpactForce”, etc…
Add categories specific to equipment slots in an ItemSlotSet (example “Primary”,
“Secondary”, “HeadGear”, etc…)
Add categories for the item sets. These are categories used to define what items can
be combined together on the character. (example “One Hand Blade”, “Shield”, “Two
Hand Gun”, “Multi Wield Gun”, etc…)
Use the category multiple parents to your advantage. Simply mix and match the
categories you need. (example “Multi Wield Gun” could inherit from “Equippable”,
“Primary”, “Secondary”, “Shootable”, “Multi Item”, “Gun”, etc…)
ItemDefinitions can inherit from other ItemDefinitions take advantage of that feature

https://opsive.com/support/documentation/ultimate-character-controller/items/runtime-pickup/
https://opsive.com/support/documentation/ultimate-inventory-system/attributes/

| 345

to create a lot of items which are slightly similar.
Read more about Attributes and the Database in the Inventory System documentation.

Character Inventory Bridge

The character Inventory Bridge derives from the Character Controller Inventory Base script,
it communicates with the Inventory System Inventory to make a smooth integration between
both tools.

Equippable Category: The Equippable category specifies the items that can be
equipped, such as an assault rifle or a sword. While this high level category is
required, the Ultimate Inventory System allows you to nest categories so you can have
any category structure beneath this.
Ammo Category: The Ammo category specifies the objects that can be “consumed” by
items, such as assault rifle bullets or mana.
Single Item Prefab Attribute Name: The attribute name of the GameObject attribute
which specifies the prefab that should be spawned. This prefab should be a runtime
pickup prefab.
Multi Item Prefabs Attribute Name: The attribute name of the GameObjects attribute
which specifies the prefabs that should be spawned for mutli items. Those prefab
should be a runtime pickup prefab.
Default Item Collection Name: The main item collection with all non-equippable the
items.
Equippable Item Collection Names: A list of equippable item collections which are

https://opsive.com/support/documentation/ultimate-inventory-system/inventory-system-manager/
https://opsive.com/support/documentation/ultimate-character-controller/items/runtime-pickup/
https://opsive.com/support/documentation/ultimate-character-controller/items/runtime-pickup/
https://opsive.com/support/documentation/ultimate-character-controller/items/runtime-pickup/

| 346

used to store all items which can be equipped or are equipped by the Character
Controller.
Loadout Item Collection Name: The loadout Item Collection is loaded on start and
added to the main item collection.
Drop Using Character Item When Possible: If true the when dropping a Character
Item, the drop prefab will be used from the Character Item instance Drop Prefab. If
not, the generic “Inventory Item Pickup Prefab” will be used.
Inventory Item Pickup Prefab: The prefab used to drop all items, except Character
Items if the “Drop Using Character Item When Possible” field above is toggle on, when
the Drop function is called on the Character Inventory Bridge script.
Item Drop Position Offset: The offset from the character position to spawn the item
drop.

API

The Character Inventory Bridge has a lot of useful functions used to get the items you want,
equip them, etc…

// Get the Inventory system Inventory from anywhere using the manager.
var inventory =
InventorySystemManager.GetInventoryIdentifier(1).Inventory;
// Get the character Inventory Bridge from the Inventory.
var characterInventoryBridge =
inventory.gameObject.GetCachedComponent<CharacterInventoryBridge>();
// Get all the equippable item collection, returns a Item Collection
Group.
var equippableItemCollections =
characterInventoryBridge.EquippableItemCollections;

///
/// Equip Items
///

//Items must be added to the Inventory before they can be added.
// This adds the item to the main item collection.
var addedItem = inventory.AddItem("Assault Rifle", 1);
// Before an item can be equipped it must be part of one of the
Equippable Item Collection.
var equippableCollectionIndex = 0;
var slotIndex = -1; //The itemcollection slot index.
characterInventoryBridge.MoveItemToEquippable(addedItem,
equippableCollectionIndex, slotIndex);

// Once the item ins in equippable it can be equipped.
characterInventoryBridge.Equip(addedItem, true);
// And unequipped
characterInventoryBridge.Equip(addedItem, false);

// Note that the item is still in equippable at this point and it can

| 347

be sent back to default item collection with
characterInventoryBridge.MoveItemToDefault(addedItem,
equippableCollectionIndex, slotIndex);

// It is actually more efficient to use the MoveEquip if you plan to
move to equippable and equip directly after.
// Moving the item to one of the Equippable item collection and
Equipping it can be done in one line of code.
characterInventoryBridge.MoveEquip(addedItem, true);
// It can be unequipped too.
characterInventoryBridge.MoveEquip(addedItem, false);

///
/// Get Items
///
// Get a character Item from an inventory Item.
var slotID = -1; // The Item Set slot.
var characterItem =
characterInventoryBridge.GetCharacterItem(addedItem.Item, slotID);
// For multi inventory item can have multiple character items
var characterItems =
characterInventoryBridge.GetCharacterItems(addedItem.Item);
// you can get the inventory item from a character item.
var inventoryItem =
characterInventoryBridge.GetInventoryItem(characterItem);

///
/// Drop Items
///
var inventoryDrop = characterInventoryBridge.DropItem(addedItem, true,
true);

Inventory Item Set Manager

The Inventory Item Set Manager takes care of creating the Item Sets for the equippable
items using the Item Set Rule Object.

| 348

When an item is added to, or removed from, the Equippable Item Collections, the Character
Inventory Bridge component will notify the Inventory Item Set Manager to update the Item
Sets. The system will go through all the Item Set Rules and check if any of them return a
new Item Set for the current set of equippable Items. Once the Item Sets are created they
function as they do in the Character Controller system.

Some events are fired before and after the Item Sets are updated. This event specifies what
Item Sets will be added, removed or kept. This data can be used to modify some of the Item
Sets even more when individual Item Set Rules are not enough. Although custom Item Set
Rules are probably the way to go in most advanced and complex use cases.

| 349

When creating your Item Set Rules it is important to restrict them to specific categories and
make use of the State System and presets.

Example:

Equippable Collection has: 1 Sword, 1Shield, 1 Bow

Having a single Item Set Rule with Equippable in slot 0 (Equippable(0)) won’t work well
since the Item Set Rule will try to create 3 ItemSets with the items in the right hand.
Instead the you should use at least 3 Item Set Rules: Sword(0), Sword(0)+Shield(1), Bow(1).

It is recommended to have a look at the integration demo scene to see how the Item Set
Rules are setup there.

Item Set Rules

Item Set Rules are used to create Item Sets given a list of equippable items. By default there
are three types of Item Set Rules:

Item Set Rule With Item Categories: An Item Set is created if each slot with an Item
Category inherently contains an equippable item.
Item Set Rule With ItemDefinitions: An Item Set is created if each slot with an Item
Definition inherently contains an equippable item.
Item Set Rule Object Container: An Item Set Rule which points to an “Item Set Rule
Object” scriptable object. The Item Set Rule Object class can be inherited to create
custom Rules for more advanced use cases, example a Item Set Rule which returns
multiple Item Sets with different state names.

The Item Set Rule type can be chosen when adding an Item Set Rule to the Item Set Rules
Object.

API

A custom Item Set Rule cab be created by inheriting the Item Set Rule Object class:

[CreateAssetMenu(fileName = "MyItemSetRule", menuName =
"MyItemSetRule")]
public class MyItemSetRule : ItemSetRuleObject
{

| 350

 private int m_SlotCount = 0;
 List<ItemSet> m_ItemSets = new List<ItemSet>();
 public override ListSlice<ItemSet> GetItemSetsFor(ListSlice<Item>
items)
 {
 m_ItemSets.Clear();
 // Create your item sets and add them to the item sets list.
 // Refer to the Item Set Rule class to learn how to do this
correctly.
 return m_ItemSets;
 }
 public override void SetSlotCount(int slotCount)
 {
 m_SlotCount = slotCount;
 }
 public override bool DoesItemMatchRule(Item item)
 {
 // return true only if the item set rule has a slot where this
item could go in.
 return false;
 }
}

Equipping Skinned Mesh Clothes

The Character Controller Inventory does not support character skinned mesh items. Clothes
and armor must be equipped through the Ultimate Inventory System. The easiest way to do
so is by using the Equipper script.
Since armor and weapons will be equipped through different systems the clothes cannot be
equipped with an “Equippable” ItemCollection, these are meant to be used purely for the
Character Controller weapons. Therefore another ItemCollection must be used for clothes
and armor.

Create a new ItemSlotCollection for your armor and name it accordingly (i.e “Armor1.
Equipped”), set its purpose to “None” such that it won’t be confused with the
“Equippable” collections.
Create an ItemSlotSet for your armor slots and assign it to your new2.
ItemSlotCollection.
Add an Equipper script to your character, assign the ItemSlotSet and define which3.
slots are skinned mesh.
Create an additional Equipment UI (aka ItemSlotCollectionView) separate from the4.
weapons equipment UI. Make sure that each are set up correctly and point to the
correct ItemSlotCollections. This is done by setting the Item Collection name/purpose
on the ItemSlotCollectionView inspector under the Item Collection ID field.
You will have two equip item actions, one for your armor items and one for your5.
weapon items. Use the MoveToItemCollection Item Action for equipping the armor in
the UI and make sure the correct ItemCollection name are specified (i.e Main and
“Armore Equipped”), The CharacterEquipItemAction should only be used for equipping
“Equippable” Character Controller weapons.

https://opsive.com/support/documentation/ultimate-inventory-system/item-objects/equipping-items/

| 351

 Create items with skinned mesh prefabs following the Equipper guidelines for skinned6.
mesh equipments.
Make sure to only use the “EquipmentPrefab” attribute and not the7.
“UsableItemPrefab” attribute since usable Item Prefabs are not required in the
integration.

Since your armor and weapon items will be separated in two or more item collections you
may wish to create an Item Collection Group to keep track of all your equipment in code.

The Equipper script is fairly simple, you may extend it or replace it with your own custom
script to make it more advanced.

Events

All the events used in the integration can be found in the “Integration Event Names” script.
Most will be interested in the following Inventory system or character controller events, to
know when an item moves between item collections or when it is equipped and active on the
character.

EventHandler.RegisterEvent<ItemInfo,
ItemStack>(m_InventoryBridge.Inventory,
EventNames.c_Inventory_OnAdd_ItemInfo_ItemStack,
OnAddItemToInventory);
EventHandler.RegisterEvent<ItemInfo>(m_InventoryBridge.Inventory,
EventNames.c_Inventory_OnRemove_ItemInfo, OnRemoveItemFromInventory);
EventHandler.RegisterEvent<Items.Item, int>(m_CharacterGameobject,
"OnAbilityUnequipItemComplete", OnUnequipItemComplete);
EventHandler.RegisterEvent<Items.Item, int>(m_CharacterGameobject,
"OnInventoryEquipItem", OnEquipItemComplete);
EventHandler.RegisterEvent<Items.Item, int>(m_CharacterGameobject,
"OnAbilityWillEquipItem", OnWillEquipItem);

Other useful events for the Character Controller can be found here. The Inventory system
event names can be found in the “Event Names” script.

Inventory Item Pickups

Item Pickups/Drops can be either use the integration component “Inventory Item Pickups”
or any of the Inventory system pickups. The main difference is that the Inventory Item
Pickup works using the Character pickup ability, while the inventory system pickups work
with the Inventory Interactable system. It is your choice to either use one, the other, both or
neither.

As mentioned in the Character Inventory Bridge section, a generic Inventory Pickup prefab
is defined on that character and is used for all items. Except for Character Items which
optionally can be dropped using the pickup prefab defined on the Character Item instance
itself.

The generic Inventory Pickup prefab can show different models when the “Inventory Item
Visualizer” is used. This component watches the first item in an inventory and spawns a

https://opsive.com/support/documentation/ultimate-inventory-system/item-objects/equipping-items/
https://opsive.com/support/documentation/ultimate-character-controller/programming-concepts/events/event-names/

| 352

prefab set as an attribute on the item. Therefore the same pickup prefab may be used to
drop a log or a brick and they will look differently if the drop prefab attribute is found on the
inventory item.

You may easily create Item Pickups from the Integration Editor

UI

The UI functions separately between the character and inventory systems. Each can be
setup indepedently using the Manager Editor provided by their respective tool.

The Inventory system UI is more advanced and has many features. For example the Item
Action is usually used to equip items. But the Integration equipping is more advanced than
what is used in the Inventory system demo. So we created a few very useful Inventory Item
Actions which can be used with the integration. It is recommended you create your own
Item Actions too for more control.

Custom Inventory Item Actions

Character Drop: Drop Items using the character.
Character Quantity Drop: Drop a chosen amount of Items using the character.
Character Equip Unequip: Equip or Unequip an item.
Character Modify Attribute: Use an item attribute to modify a character attribute. This
can be used to increase/decrease Health, Armor, or any other character attribute
value.
Character Use: Equip Use and Unequip an item. This is used in the demo to cast a fire
ball for example when using the Magic item “Fireball”.

Most users will wish to disable the character input while panels are opened.

| 353

By default the Character Controller hides the cursor. But while Inventory Panels are open
you may wish to show that cursor. Use the Display Panel Manager Handler, instead of the
Unity Input to handle the cursor

API

Since Item, Inventory and Item Collection class names are used in both the Character and
Inventory system for different things, it is important to use the right ones when creating
custom code. Here are some using statements that can help to prevent confusion:

using Item = Opsive.UltimateInventorySystem.Core.Item;
using ItemCollection =
Opsive.UltimateInventorySystem.Core.InventoryCollections.ItemCollectio
n;
using Inventory =
Opsive.UltimateInventorySystem.Core.InventoryCollections.Inventory;
using CharacterItem = Opsive.UltimateCharacterController.Items.Item;

| 354

Upgrading from V1.X to V2.X

Before upgrading make sure to remove the old integration package before importing
the new version. If not many warnings/errors will pop up.

All the items will be able to carry over to the new version.

To update a character to the new integration make sure to update the scripts on the
character, and refer to the character setup to learn more.
Note: If a script is missing on the character it might be the Inventory Item Set Manager.

Ultimate Inventory System Bridge has been renamed Character Inventory Bridge
Inventory System Item Set Manager has been renamed Inventory Item Set Manager

Some of the Item Attributes which were previously required are no longer.
Feel free to remove the following attributes from your Item Categories, as they are no
longer used:

IsEquipped
ExposedItemSet
CanEquipFromMenu
ExclusiveEquip

The Item Sets will need to be recreated using the new Item Set Rule system, you may
learn more about them below.

Remove the Item Sets from your Inventory Item Pickups if you are using the Item Set
Rule for that item.

The “Unique Item Set” field on the character Item Prefab should be disabled if you
are using the Item Set Rules for that item (otherwise two Item Sets will be created for the
same item.)

The bridge system works differently from before. Here are some of the main differences:

The Bridge works by listening to the Inventory Item Collection add/remove events, not
the other way around. Meaning that the items can be directly added into a specific
Item Collection without breaking the state of the bridge.
Equippable Items are no longer added to the Character Inventory automatically. This
used to be a problem with scalability since all the items in the inventory would spawn
and be disabled on the character.
The Item Set Rule changes completely how Item Sets are created, and allows for way
more flexibility & scalibility.
Unequipped items are now removed from the Item Collection first while the unequip
Item animation is playing. Therefore there is no longer a required “waiting time” for
moving item collection when equipping/removing items. This was a big issue when
working with other Inventory system features.
Multi Items are now all spawned when an item is added to Equippable, the Item Sets
(created from the Item Set Rule) will decide which one is active.
The Is Equipped attribute is no longer used, to check if an item is “soft equipped” (in

| 355

the equipppable item collection) or “active equipped” (in the active Item Set) use the
Character Inventory Bridge component.
All the events have been changed, refer to the Event Section below to learn more
The Shop and Crafter component should no longer use “external remove” since the
items can now be removed normally.

Playmaker
The Ultimate Character Controller is integrated with Playmaker allowing you to use
Playmaker to control your character. An individual action has not been created for each
field/property because the state system can be used instead. New states can be set with the
Set State action. The Playmaker actions can be used using the standard Playmaker workflow
and no extra steps are necessary.

If you’d like to see any new actions created please request those actions on the forum.

Downloads

Ultimate Character Controller
First Person Controller
Third Person Controller
UFPS: Ultimate First Person Shooter
UTPS: Ultimate Third Person Shooter
UFPM: Ultimate First Person Melee
UFPM: Ultimate Third Person Melee

PuppetMaster
The Ultimate Character Controller is integrated with PuppetMaster allowing your character
to become a puppet when colliding with other objects. While both first and third person are
support from the character controller side of things, we imagine that this integration will
primarily be used for third person characters. When the PuppetMaster integration is used
Unity’s ragdoll system should not be added to the character.

The PuppetMaster integration is maintained by Root Motion and can be downloaded from
this page. Root Motion created a video explaining how to integrate the two assets:

Setup

Before setting up the integration it is recommend that you have first independently setup a
Ultimate Character Controller character and PuppetMaster puppet before.

Create a “Collision” and “Ragdoll” layers. In our demo scene the Collision layer is1.
index 24, and Ragdoll layer is index 25.
Disable collisions between Character-Ragdoll and Character-Collision layers.2.

https://assetstore.unity.com/packages/tools/visual-scripting/playmaker-368?aid=1100lGdc
https://opsive.com/support/documentation/ultimate-character-controller/state-system/
https://opsive.com/forum/index.php?threads/playmaker.860/
https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807
https://opsive.com/downloads?pid=926
https://opsive.com/downloads?pid=185
https://opsive.com/downloads?pid=1107
https://opsive.com/downloads?pid=1106
https://opsive.com/downloads?pid=1108
https://assetstore.unity.com/packages/tools/physics/puppetmaster-48977?aid=1100lGdc
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqbm5pcWlkVEF3R0lLd1FfcjdXT2Vfb2lBSXVtd3xBQ3Jtc0trd0tzWGtBUjVjSEVqWE9JN1I5NWNxQXVqbVYweGNLY2lxLWl5UnQ0MFRfb3ZRUy00YklmS042aTVvdFp0Nm01NWNSTEJ2TldUcWpGbDM0ZGJLX1BoMmI3bFhvM2lhck81ZEtGSm04VWFkRnJLdWltWQ&q=https%3A%2F%2Frootmotion.freshdesk.com%2Fsupport%2Fsolutions%2Farticles%2F77000484277-patches

| 356

Add a character model to the scene.3.
Duplicate the character.4.
Add Biped Ragdoll Creator.cs to the duplicate, click on “Create Ragdoll” and “Done” or5.
“Start Editing Manually” if you wish to edit.
Ensure the project and scene are setup through the Ultimate Character Controller6.
Setup Manager.
Open Tools/Opsive/Ultimate Character Controller/Character Manager. Assign the7.
original character (not the duplicate) and ensure the “Ragdoll” toggle is disabled. Click
on “Build Character”.
Add PuppetMaster to the duplicate, set “Character Controller Layer” to the layer8.
number of “Character” and “Ragdoll Layer” to “Ragdoll”. Assign the original character
as “Animated Target”.
Click on “Set Up PuppetMaster”.9.
Drag the “Puppet Behaviour (UCC)” prefab from the integration folder and drop it10.
under the “Behaviours” GameObject.

Set the Behaviour Puppet’s Ground Layers field to “Default”.11.
Set the Behaviour Puppet’s Collision Layers field to “Collision”.12.
Add the “Ragdoll” layer to the Invisible Layers mask in the Character Layer Manager13.
component on the character.
Add “Puppet” ability to the Ultimate Character Locomotion’s Abilities, assign the14.
“Puppet” and “Puppet Master” fields.
Copy the “BehaviourPuppet” and “BehaviourFall” Sub-State Machines over from the15.
“PuppetMasterDemoAnimator” animator controller in the integration folder to the
animator controller used by your character.

| 357

Go to the Character IK component on the character and remove the “Ragdoll” layer16.
from it’s “Layer Mask”.
Remove the “Ragdoll” layer from the Solid Objects Layer on the Character Layer17.
Manager component.
Set the Smoothed Bones on the Ultimate Character Locomotion component to 0.18.
Ensure the Update Location on the Ultimate Character Locomotion is set to “Fixed19.
Update”.
Ensure the Animator’s Update Mode is set to “Animate Physics”.20.

Quest Machine
The Quest Machine integration allows your character to go on quests while being managed
by Quest Machine. After downloading the integration package the documentation can be
found within the Quest Machine/Third Party Support/Opsive UCC Support folder.

Downloads

Ultimate Character Controller
First Person Controller
Third Person Controller
UFPS: Ultimate First Person Shooter
UTPS: Ultimate Third Person Shooter
UFPM: Ultimate First Person Melee
UFPM: Ultimate Third Person Melee

Realistic Car Controller
The character controller is integrated with Realistic Car Controller giving your character
the ability to drive a vehicle controlled by Realistic Car Controller. The integration contains
the RCCDriveSource which implements the IDriveSource interface described on the Drive
ability page. This integration can be downloaded from one of the pages listed below.

Downloads

Ultimate Character Controller
First Person Controller
Third Person Controller
UFPS: Ultimate First Person Shooter
UTPS: Ultimate Third Person Shooter
UFPM: Ultimate First Person Melee

https://assetstore.unity.com/packages/templates/systems/quest-machine-39834?aid=1100lGdc
https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807
https://opsive.com/downloads?pid=926
https://opsive.com/downloads?pid=185
https://opsive.com/downloads?pid=1107
https://opsive.com/downloads?pid=1106
https://opsive.com/downloads?pid=1108
https://assetstore.unity.com/packages/tools/physics/realistic-car-controller-16296?aid=1100lGdc
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/drive/
https://opsive.com/support/documentation/ultimate-character-controller/character/abilities/included-abilities/detect-object-ability-base/drive/
https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807
https://opsive.com/downloads?pid=926
https://opsive.com/downloads?pid=185
https://opsive.com/downloads?pid=1107
https://opsive.com/downloads?pid=1106

| 358

UFPM: Ultimate Third Person Melee

Setup

Install the integration from above.1.
Ensure the vehicle is setup according to the Realistic Car Controller documentation.2.
Follow the directions from the Drive ability documentation page.3.

For Step 3 the RCCDriveSource component should be added to the vehicle.
Step 6 does not need to be performed.

If you want to use the Realistic Car Controller to control the camera while the4.
character is driving the vehicle the Use Car Camera Controller toggle should be
enabled. If this is enabled the Realistic Car Controller camera GameObject should
exist within the scene.

Rewired
The Ultimate Character Controller is integrated with Rewired allowing you to use Rewired
for your input instead of Unity’s input system. This integration can be downloaded from one
of the pages listed below.

Downloads

Ultimate Character Controller
First Person Controller
Third Person Controller
UFPS: Ultimate First Person Shooter
UTPS: Ultimate Third Person Shooter
UFPM: Ultimate First Person Melee
UFPM: Ultimate Third Person Melee

Setup

Install the integration from above.1.
Remove the Unity Input component from your character (if it has been added).2.
Add the Rewired Input component to your character.3.
If you are using Rewired touch controls the Enable Touch Controls field on the4.
Rewired Input component should be enabled.
Setup the Rewired Input Manager to work with your input setup. Multiple Rewired5.
Input Managers prefabs are included in the integration package allowing you to
quickly get started. Choose the one most appropriate for your project. If you are using
one of these prefab make sure you drag it into your scene.
Remove any Virtual Controls created by the Setup Manager. The Virtual Controls are6.
designed to work with the Unity Input component.

UMA
The Ultimate Character Controller is integrated with UMA allowing your character to be
created dynamically while being controlled by the Ultimate Character Controller. Version

https://opsive.com/downloads?pid=1108
http://www.bonecrackergames.com/realistic-car-controller/
https://assetstore.unity.com/packages/tools/utilities/rewired-21676?aid=1100lGdc
https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807
https://opsive.com/downloads?pid=926
https://opsive.com/downloads?pid=185
https://opsive.com/downloads?pid=1107
https://opsive.com/downloads?pid=1106
https://opsive.com/downloads?pid=1108
https://guavaman.com/projects/rewired/docs/HowTos.html#touch-controls
http://guavaman.com/projects/rewired/docs/InputManager.html
https://assetstore.unity.com/packages/3d/characters/uma-2-unity-multipurpose-avatar-35611?aid=1100lGdc

| 359

2.8 or later of UMA should be used for this integration.

There are two different options for using the Ultimate Character Controller with UMA. The
first option uses UMA’s Bone Builder tool which creates all of the bones necessary at edit
time so you can then use the Character Manager like any other character. The second
method adds all of the Ultimate Character Controller components after UMA has created
the character. This option is more advanced and is recommended for those with
programming experience as you will likely need to do some scripting in order to get the
most out of it.

Downloads

Ultimate Character Controller
First Person Controller
Third Person Controller
UFPS: Ultimate First Person Shooter
UTPS: Ultimate Third Person Shooter
UFPM: Ultimate First Person Melee
UFPM: Ultimate Third Person Melee

Bone Builder

UMA’s Bone Builder tool creates all of the bones necessary for your character at edit time
which allows you to use the Ultimate Character Controller editors like normal. To the
Ultimate Character Controller it doesn’t even know that UMA was used and no integration
components are required.

Download the UMA integration.1.
Drag your UMA Dynamic Character Avatar prefab into your scene.2.
Open the UMA Bone Builder under the UMA Toolbar.3.
Select the UMA Dynamic Character Avatar in your scene as the UMA GameObject.4.
Select the Generate Bones button. UMA Should create all of the bones required for the5.
character.
Build your character like normal through the Character and Item Managers.6.
Select the UMADynamicCharacterAvatar GameObject and inspect the Dynamic7.
Character Avatar component. Ensure the Additional Utility Recipes array is empty
under the Dynamic Character Avatar component.

Set the Default Animation Controller under the Race Animation Controllers dropdown8.
to the animator controller that has been added to your character. It will be the same
Animator Controller used by the Character Manager, such as Demo or
ThirdPersonControllerDemo. This Animator Controller is located within the
Opsive/UltimateCharacterController/Demo/Animator/Characters folder.

Enable Keep Avatar under the Advanced Options foldout within the Dynamic Character9.
Avatar component.
UMA doesn’t like transforms that have the same name. You’ll want to rename the10.
“Items” GameObject to a unique value such as “RightItems” or “LeftItems” to ensure

https://opsive.com/support/documentation/ultimate-character-controller/getting-started/setup/character-creation/
https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807
https://opsive.com/downloads?pid=926
https://opsive.com/downloads?pid=185
https://opsive.com/downloads?pid=1107
https://opsive.com/downloads?pid=1106
https://opsive.com/downloads?pid=1108

| 360

UMA doesn’t throw any errors.

Your UMA character is now ready to be used.11.

Runtime Creation

The UMA Character Builder component can add the Ultimate Character Controller
components after UMA has created the character at runtime. This method does not require
the bones to be added ahead of time using Bone Builder. This option is meant for more
advanced uses that have experience with both UMA and the Ultimate Character Controller
as there will likely be some scripting required to customize your character.

Download the UMA integration.1.
Drag your UMA Dynamic Character Avatar prefab into your scene.2.
Select the UMADynamicCharacterAvatar GameObject and inspect the Dynamic3.
Character Avatar GameObject. Ensure the Additional Utility Recipes array is empty
under the Dynamic Character Avatar component.

Set the Default Animation Controller under the Race Animation Controllers dropdown4.

| 361

to the animator controller that has been added to your character. It will be the same
Animator Controller used by the Character Manager, such as Demo or
ThirdPersonControllerDemo. This Animator Controller is located within the
Opsive/UltimateCharacterController/Demo/Animator/Characters folder.

Add the UMA Character Builder component to your UMA Dynamic Character Avatar.5.
This component will add all of the Ultimate Character Controller objects and execute
after UMA has created the character. If you’d like to execute any code after the
character has been created you can do so by adding your code to the Character
Created event.

The options within the
UMA Character Builder are similar to the options within the Character Manager.
There are a few key differences:

First/Third Person Movement Type is specified by class name. For example,
“Opsive.UltimateCharacterController.FirstPersonController.Character.Movement
Types.Combat” points to the Combat Movement Type for the first person
perspective.
First Person Hidden Object Names uses the transform name to determine which
objects should be hidden while in a first person view. In the screenshot the Head

https://opsive.com/support/documentation/ultimate-character-controller/editors/character/

| 362

GameObject will be hidden. The names are relative to the character’s base
Transform.
First Person Base Objects optionally specify any First Person Base Objects that
should be dynamically generated by UMA and added to the added to the
character. See step 6 for more details.
Assign Camera specifies if the camera should be assigned after the character has
been created.

Optionally add the UMA Ability Builder or UMA Item Pickup components to the same6.
GameObject as the UMA Character Builder was added to. These components will
likely need to be expanded to completely customize your character and will require
scripting experience.
If you’d like to use a UMA created character for your first person arms you can do so7.
by specifying the UMA character that you’d like to use within the First Person Base
Objects array of the UMA Character Builder. This requires another UMA Dynamic
Character Avatar to be placed in the scene with the UMA First Person Base Object
component added to it:

This UMA character can be a generic object so you can use a generic set of arms with
the main character model. A great video which shows how to do this is located here.
The UMA First Person Base Object component contains the following parameters:

Local Position/Rotation specifies the local position and rotation that the UMA
First Person Base Object should spawn underneath the character’s First Person
Base Objects Transform.
Item Slot Locations specifies the child Transform path that Item Slot component
should be added to.
Animator Controller refers to the Animator Controller that should be added to the
GameObject.

When Unity enters play mode the character will now first be created by UMA and then8.
able to be controlled by the Ultimate Character Controller.

Universal Render Pipeline
When the first person arms and items are drawn to the screen they are drawn using a
second camera (called camera stacking). This prevents the objects from clipping with walls
that are in front of the character. This works well for the standard pipeline, but the
universal render pipeline offers a better and more efficient solution.

The camera’s Renderer can be changed which allows you to specify the order that the

https://www.youtube.com/watch?v=2k9RqKU6oEI&index=10
https://opsive.com/support/documentation/ultimate-character-controller/camera/view-types/included-view-types/first-person/
https://www.youtube.com/watch?v=5AmI2yOx0Nc

| 363

objects are rendered. The Ultimate Character Controller uses this method to ensure the first
person arms and items do not clip with other objects.

Integration Downloads

Ultimate Character Controller
First Person Controller
UFPS: Ultimate First Person Shooter
UFPM: Ultimate First Person Melee

Setup

Setup your project to use the universal render pipeline.1.
Import the universal render pipeline integration package from above.2.
Add the OverlayForwardRendererData reference to universal render pipeline’s setting3.
file.

Change the camera’s Renderer to the OverlayForwardRendererData that was specified4.
in the last step:

On the Camera Controller select the First Person View Type and change the Overlay5.
Render Type to Render Pipeline:

To prevent duplicate shadows ensure Cast Shadows is set to Off for all of the6.
Renderers on the first person objects. For example, with the example character you’ll
want to ensure Cast Shadows is set to Off for all of the objects underneath the
Nolan/First Person Objects GameObject.
The InvisibleShadowCastorUniversalRP material needs to be set:7.

If using the Ultimate Character Controller, on your character’s Perspective
Monitor the Invisible Material should be set to the
InvisibleShadowCastorUniversalRP material included in the download.
If using a dedicated first person asset, the InvisibleShadowCastorUniversalRP
material should manually be set on all of the third person objects that should be
invisible (such as the head, arms, and items).

If you are using the Object Fader component set the Color Property Name to8.
“_BaseColor”.
On the Surface Manager the Main Texture Property Name should be set to the name of9.
the main texture within the shader that you are using.

https://opsive.com/downloads?pid=923
https://opsive.com/downloads?pid=807
https://opsive.com/downloads?pid=185
https://opsive.com/downloads?pid=1106
https://docs.unity3d.com/Packages/com.unity.render-pipelines.universal@7.0/manual/getting-started-with-universalrp.html
https://docs.unity3d.com/Manual/class-MeshRenderer.html
https://opsive.com/support/documentation/ultimate-character-controller/camera/object-fader/
https://opsive.com/support/documentation/ultimate-character-controller/surface-system/surface-manager/

| 364

Videos
Videos can be found on the Videos page.

https://opsive.com/videos/?pid=923

	Ultimate Character Controller
	Getting Started
	Version 2.2 Update Guide
	Importing
	Demo Scene
	Setup
	Project Update
	Scene Setup
	Character Creation
	Item Type Creation
	Item Creation
	Organization
	Component Overview
	Editors
	Setup
	Character
	Item Types
	Item
	Object
	Integrations
	State Configuration
	Character
	Movement Types
	Included Movement Types
	First Person Combat
	First Person Free Look
	Third Person Adventure
	Third Person Combat
	Third Person Four Legged
	Third Person Point & Click
	Third Person Pseudo3D (2.5D)
	Third Person RPG
	Third Person Top Down
	Abilities
	Included Abilities
	Align To Ground
	Align To Gravity Zone
	Damage Visualization
	Detect Ground Ability Base
	Detect Object Ability Base
	Drive
	Interact
	Look At
	Pickup Item
	Ride
	Die
	Fall
	First Person Lean
	Follow Pseduo3D (2.5D) Path
	Generic
	Height Change
	Idle
	Rotate Towards
	Item Equip Verifier
	Jump
	Move Towards
	Move With Object
	NavMeshAgent Movement
	Quick Start
	Quick Stop
	Quick Turn
	Ragdoll
	Restrict Position
	Restrict Rotation
	Revive
	Rideable
	Stop Movement Animation
	Slide
	Speed Change
	Target Orbit
	Item Abilities
	Aim
	Block
	Drop
	Item Set
	Equip Next
	Equip Previous
	Equip Scroll
	Equip Unequip
	Toggle Equip
	Reload
	Third Person Item Pullback
	Use
	In Air Melee Use
	Melee Counter Attack
	Ability Starter
	Move Towards Location
	Animator Motion
	New Ability
	Effects
	Included Effects
	Boss Stomp
	Play Audio Clip
	Shake
	Generic Character
	Time
	Minimum Component Setup
	Camera
	View Types
	Included View Types
	First Person
	Combat
	Free Look
	First Person Transform Look
	Third Person
	Adventure
	Combat
	RPG
	Third Person Look At
	Third Person Pseudo3D (2.5D)
	Third Person Top Down
	Transition
	Aim Assist
	Object Fader
	Post Processing
	Split Screen
	Items
	Perspective
	First Person
	Third Person
	Actions
	Usable
	Flashlight
	Magic
	Melee Weapon
	Shootable Weapon
	Throwable Item
	Grenade Item
	Shield
	Dual Wielding
	Runtime Pickup
	Animator Audio State Set
	Inventory
	Item Types
	Item Sets
	Slots
	Animation
	Springs
	Animator
	Animator Controller
	Animator Parameters
	Default Animator Values
	First Person Arms
	Replacing Animations
	Animation Event Trigger
	Input
	Virtual Controls
	State System
	Presets
	Attributes
	Health
	Inverse Kinematics (IK)
	Objects
	Explosions
	Damage Processor
	Magic Particle
	Object Identifier
	Object Pickup
	Health Pickup
	Item Pickup
	Trajectory Object
	Grenade
	Magic Projectile
	Projectile
	Shell
	Moving Platforms
	Layer Manager
	Surface System
	Surface Manager
	Surface Impacts
	Surface Types
	Surface Effects
	Surface Identifiers
	Decal Manager
	Character Foot Effects
	Advanced Surface System Topics
	Spawn System
	Respawner
	Spawn Points
	Audio
	Programming Concepts
	Events
	Event Names
	Scheduler
	Object Pool
	Artificial Intelligence (AI)
	Multiplayer
	Virtual Reality (VR)
	Integrations
	Adventure Creator
	A* Pathfinding Project
	Cinemachine
	Control Freak
	DestroyIt
	Dialogue System
	Easy Touch
	Edy's Vehicle Physics
	Final IK
	High Definition Render Pipeline
	Horse Animset Pro
	InControl
	Input System
	Love/Hate
	NWH Vehicle Physics
	Opsive Behavior Designer
	Opsive Ultimate Inventory System
	Playmaker
	PuppetMaster
	Quest Machine
	Realistic Car Controller
	Rewired
	UMA
	Universal Render Pipeline
	Videos

